
Xinguo Ming

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8019088/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multicriteria Decision-Making Framework for Supplier Selection: A Customer Community-Driven Approach. IEEE Transactions on Engineering Management, 2023, 70, 3434-3450.	3.5	7
2	Selecting industrial IoT Platform for digital servitisation: a framework integrating platform leverage practices and cloud HBWM-TOPSIS approach. International Journal of Production Research, 2023, 61, 4022-4044.	7.5	15
3	A Smart system in Manufacturing with Mass Personalization (S-MMP) for blueprint and scenario driven by industrial model transformation. Journal of Intelligent Manufacturing, 2023, 34, 1875-1893.	7.3	1
4	Knowledge-Driven Industrial Intelligent System: Concept, Reference Model, and Application Direction. IEEE Transactions on Computational Social Systems, 2023, 10, 1465-1478.	4.4	4
5	A novel hesitant fuzzy linguistic hybrid cloud model and extended bestâ€worst method for multicriteria decision making. International Journal of Intelligent Systems, 2022, 37, 596-624.	5.7	18
6	Service-oriented knowledge recommender system and performance evaluation in industrial product development. International Journal of Production Research, 2022, 60, 6226-6247.	7.5	3
7	A Birnbaum importance-based two-stage approach for two-type component assignment problems. Reliability Engineering and System Safety, 2022, 218, 108051.	8.9	8
8	An integrated framework of user experience-oriented smart service requirement analysis for smart product service system development. Advanced Engineering Informatics, 2022, 51, 101458.	8.0	24
9	Implementation path and reference framework for Industrial Internet Platform (IIP) in product service system using industrial practice investigation method. Advanced Engineering Informatics, 2022, 51, 101481.	8.0	9
10	Networking-enabled product service system (N-PSS) in collaborative manufacturing platform for mass personalization model. Computers and Industrial Engineering, 2022, 163, 107805.	6.3	9
11	Potential Requirements and Opportunities of Blockchain-Based Industrial IoT in Supply Chain: A Survey. IEEE Transactions on Computational Social Systems, 2022, 9, 1469-1483.	4.4	13
12	A Pythagorean fuzzy ANP-QFD-Grey relational analysis approach to prioritize design requirements of sustainable supply chain. Journal of Intelligent and Fuzzy Systems, 2022, 42, 3893-3907.	1.4	14
13	System construction for comprehensive industrial ecosystem oriented networked collaborative manufacturing platform (NCMP) based on three chains. Advanced Engineering Informatics, 2022, 52, 101538.	8.0	16
14	Prioritizing risk factors in sustainable supply chain using fuzzy Kano and interval-valued inturitionistic fuzzy QFD. Kybernetes, 2022, ahead-of-print, .	2.2	5
15	Comprehensive understanding of smart product service system from multi-dimension and multi-perspective: An innovative service model for Customer-product Interaction Life Cycle (CILC). Advanced Engineering Informatics, 2022, 52, 101619.	8.0	13
16	Industrial Internet Platform (IIP) enabled Smart Product Lifecycle-Service System (SPLSS) for manufacturing model transformation: From an industrial practice survey. Advanced Engineering Informatics, 2022, 52, 101633.	8.0	8
17	Configuration optimization of service solution for smart product service system under hybrid uncertain environments. Advanced Engineering Informatics, 2022, 52, 101632.	8.0	9
18	A flexible smart manufacturing system in mass personalization manufacturing model based on multi-module-platform, multi-virtual-unit, and multi-production-line. Computers and Industrial Engineering, 2022, 171, 108379.	6.3	15

#	Article	IF	CITATIONS
19	A fuzzy universal generating function-based method for the reliability evaluation of series systems with performance sharing between adjacent units under parametric uncertainty. Fuzzy Sets and Systems, 2021, 424, 155-169.	2.7	5
20	A novel Kano-QFD-DEMATEL approach to optimise the risk resilience solution for sustainable supply chain. International Journal of Production Research, 2021, 59, 1714-1735.	7.5	54
21	An implementation for Smart Manufacturing Information System (SMIS) from an industrial practice survey. Computers and Industrial Engineering, 2021, 151, 106938.	6.3	16
22	Process optimization through closed-loop Kaizen with discrete event simulation: A case study in China. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2021, 235, 568-579.	2.4	3
23	Explicit and implicit Valuation-Based System methods for the risk assessment of systems subject to common-cause failures under uncertainty. Knowledge-Based Systems, 2021, 214, 106665.	7.1	3
24	Further expansion from Smart Manufacturing System (SMS) to Smart Manufacturing Implementation System (SMIS): industrial application scenarios and evaluation. International Journal of Advanced Manufacturing Technology, 2021, 115, 3791-3809.	3.0	5
25	A comprehensive industrial practice for Industrial Internet Platform (IIP): General model, reference architecture, and industrial verification. Computers and Industrial Engineering, 2021, 158, 107426.	6.3	19
26	Servitization and Sustainable Value Creation Strategy for China's Manufacturing Industry: A Multiple Case Study in the Belt and Road Initiative. Sustainability, 2021, 13, 11334.	3.2	5
27	Identification of product service common and individual demands based on online reviews. , 2021, , .		0
28	Smart Product Service Requirements Identification and Evaluation: A Hybrid Method. , 2021, , .		2
29	A framework with hybrid approach to analyse system requirements of smart PSS toward customer needs and co-creative value propositions. Computers and Industrial Engineering, 2020, 139, 105776.	6.3	30
30	Explore and evaluate innovative value propositions for smart product service system: A novel graphics-based rough-fuzzy DEMATEL method. Journal of Cleaner Production, 2020, 243, 118672.	9.3	86
31	Human factors risk assessment: An integrated method for improving safety in clinical use of medical devices. Applied Soft Computing Journal, 2020, 86, 105918.	7.2	36
32	A hybrid framework integrating rough-fuzzy best-worst method to identify and evaluate user activity-oriented service requirement for smart product service system. Journal of Cleaner Production, 2020, 253, 119954.	9.3	47
33	Sustainable supplier selection for smart supply chain considering internal and external uncertainty: An integrated rough-fuzzy approach. Applied Soft Computing Journal, 2020, 87, 106004.	7.2	162
34	Reference subsystems for Smart Manufacturing Collaborative System (SMCS) from multi-processes, multi-intersections and multi-operators. Enterprise Information Systems, 2020, 14, 282-307.	4.7	14
35	Understanding Data-Driven Cyber-Physical-Social System (D-CPSS) Using a 7C Framework in Social Manufacturing Context. Sensors, 2020, 20, 5319.	3.8	25
36	Sustainable and smart product innovation ecosystem: An integrative status review and future perspectives. Journal of Cleaner Production, 2020, 274, 123005.	9.3	62

#	Article	IF	CITATIONS
37	An extended Birnbaum importance-based two-stage heuristic for component assignment problems under uncertainty. Reliability Engineering and System Safety, 2020, 204, 107134.	8.9	7
38	Selection of design alternatives for smart product service system: A rough-fuzzy data envelopment analysis approach. Journal of Cleaner Production, 2020, 273, 122931.	9.3	30
39	Modularization of smart product service: A framework integrating smart product service blueprint and weighted complex network. Computers in Industry, 2020, 123, 103302.	9.9	14
40	Explicit and implicit Bayesian Network-based methods for the risk assessment of systems subject to probabilistic common-cause failures. Computers in Industry, 2020, 123, 103319.	9.9	5
41	A Fuzzy ANP-QFD Methodology for Determining Stakeholders in Product-Service Systems Development from Ecosystem Perspective. Sustainability, 2020, 12, 3329.	3.2	12
42	A rough–fuzzy approach integrating best–worst method and data envelopment analysis to multi-criteria selection of smart product service module. Applied Soft Computing Journal, 2020, 94, 106479.	7.2	58
43	Knowledge recommendation for product development using integrated rough set-information entropy correction. Journal of Intelligent Manufacturing, 2020, 31, 1559-1578.	7.3	12
44	Application of industrial big data for smart manufacturing in product service system based on system engineering using fuzzy DEMATEL. Journal of Cleaner Production, 2020, 265, 121863.	9.3	47
45	The Realization for Automated Warehouse Based on the Integration of ERP and WMS. , 2020, , .		6
46	General reference model and overall frameworks for green manufacturing. Journal of Cleaner Production, 2019, 237, 117757.	9.3	22
47	Top-level scenario planning and overall framework of smart manufacturing implementation system (SMIS) for enterprise. International Journal of Advanced Manufacturing Technology, 2019, 104, 3835-3848.	3.0	8
48	A new customization model for enterprises based on improved framework of customer to business: A case study in automobile industry. Advances in Mechanical Engineering, 2019, 11, 168781401983388.	1.6	7
49	Research on Technical Framework of Design Quality Control for Civil Aircraft R&D Project. , 2019, , .		0
50	A methodological framework with rough-entropy-ELECTRE TRI to classify failure modes for co-implementation of smart PSS. Advanced Engineering Informatics, 2019, 42, 100968.	8.0	18
51	Reference architecture of common service platform for Industrial Big Data (I-BD) based on multi-party co-construction. International Journal of Advanced Manufacturing Technology, 2019, 105, 1949-1965.	3.0	13
52	An Integrative Framework for Online Prognostic and Health Management Using Internet of Things and Convolutional Neural Network. Sensors, 2019, 19, 2338.	3.8	15
53	A framework and implementation of Customer Platform-connection manufactory to service (CPMS) model in product service system. Journal of Cleaner Production, 2019, 230, 798-819.	9.3	15
54	State-of-the-art review of customer to business (C2B) model. Computers and Industrial Engineering, 2019, 132, 207-222.	6.3	30

#	Article	IF	CITATIONS
55	A rough-fuzzy DEMATEL-ANP method for evaluating sustainable value requirement of product service system. Journal of Cleaner Production, 2019, 228, 485-508.	9.3	89
56	A Perspective on Methodological Framework Integrating Revised Rough-DEMATEL to Co-generate and Analyze Requirements for Smart Product-Service System. , 2019, , .		1
57	An overall framework and subsystems for smart manufacturing integrated system (SMIS) from multi-layers based on multi-perspectives. International Journal of Advanced Manufacturing Technology, 2019, 103, 703-722.	3.0	31
58	A framework with revised rough-DEMATEL to capture and evaluate requirements for smart industrial product-service system of systems. International Journal of Production Research, 2019, 57, 7104-7122.	7.5	36
59	An integrated framework of enterprise information systems in smart manufacturing system via business process reengineering. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233, 2210-2224.	2.4	24
60	A reference system of smart manufacturing talent education (SMTE) in China. International Journal of Advanced Manufacturing Technology, 2019, 100, 2701-2714.	3.0	9
61	A framework integrating interval-valued hesitant fuzzy DEMATEL method to capture and evaluate co-creative value propositions for smart PSS. Journal of Cleaner Production, 2019, 215, 611-625.	9.3	76
62	A reference framework and overall planning of industrial artificial intelligence (I-AI) for new application scenarios. International Journal of Advanced Manufacturing Technology, 2019, 101, 2367-2389.	3.0	56
63	Process Parameter Optimization of Solder Paste Deposition for SoC Using Taguchi–Grey and Entropy Approach. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 482-491.	2.5	7
64	A Fault Diagnosis and Maintenance Decision System for Production Line Based on Human-machine Multi- Information Fusion. , 2018, , .		8
65	A perspective on value co-creation-oriented framework for smart product-service system. Procedia CIRP, 2018, 73, 155-160.	1.9	62
66	A Rough Multi-Criteria Decision-Making Approach for Sustainable Supplier Selection under Vague Environment. Sustainability, 2018, 10, 2622.	3.2	34
67	ldentifying critical risk factors of sustainable supply chain management: A rough strength-relation analysis method. Journal of Cleaner Production, 2017, 143, 100-115.	9.3	133
68	Status Review and Future Perspectives on the Framework of Smart Product Service Ecosystem. Procedia CIRP, 2017, 64, 181-186.	1.9	38
69	Big data analytics platform for flight safety monitoring. , 2017, , .		11
70	Construction of cyber-physical system–integrated smart manufacturing workshops: A case study in automobile industry. Advances in Mechanical Engineering, 2017, 9, 168781401773324.	1.6	24
71	Dynamic Optimization for IPS2 Resource Allocation Based on Improved Fuzzy Multiple Linear Regression. Mathematical Problems in Engineering, 2017, 2017, 1-10.	1.1	3
72	A Framework for Integrating Industrial Product-Service Systems and Cyber-Physical Systems. Lecture Notes in Computer Science, 2016, , 628-637.	1.3	2

#	Article	IF	CITATIONS
73	A fuzzy technique for order preference by similarity to an ideal solution–based quality function deployment for prioritizing technical attributes of new products. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016, 230, 2249-2263.	2.4	7
74	An integrative framework for innovation management of product–service system. International Journal of Production Research, 2015, 53, 2252-2268.	7.5	37
75	Prioritising technical attributes in QFD under vague environment: a rough-grey relational analysis approach. International Journal of Production Research, 2014, 52, 5528-5545.	7.5	65
76	A rough TOPSIS Approach for Failure Mode and Effects Analysis in Uncertain Environments. Quality and Reliability Engineering International, 2014, 30, 473-486.	2.3	188
77	Failure modes and effects analysis using integrated weight-based fuzzy TOPSIS. International Journal of Computer Integrated Manufacturing, 2013, 26, 1172-1186.	4.6	113
78	Risk evaluation of customer integration in new product development under uncertainty. Computers and Industrial Engineering, 2013, 65, 402-412.	6.3	54
79	A rough set approach for evaluating vague customer requirement of industrial product-service system. International Journal of Production Research, 2013, 51, 6681-6701.	7.5	84
80	A framework of product innovative design process based on TRIZ and Patent Circumvention. Journal of Engineering Design, 2013, 24, 830-848.	2.3	34
81	The Steps and Methodology of Identifying Master Data from Business Processes. , 2009, , .		2
82	A Color Harmony Measure Model with Shape Information. , 2009, , .		3
83	Business information modeling for process integration in the mold making industry. Robotics and Computer-Integrated Manufacturing, 2007, 23, 195-207.	9.9	18