Jian-Min Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8019005/publications.pdf Version: 2024-02-01

IIAN-MIN ZHANC

#	Article	IF	CITATIONS
1	First principles study of the structural, electronic, magnetic and optical properties of the Fe doped CoS2 thin films. Thin Solid Films, 2022, 751, 139228.	1.8	1
2	Tailoring the electronic and optical properties of ZrS2/ZrSe2 vdW heterostructure by strain engineering. Thin Solid Films, 2022, 755, 139332.	1.8	6
3	Effects of the Tc, Ru, Rh and Cd substitution doping on the structural, electronic, magnetic and optical properties of blue P monolayer. Thin Solid Films, 2022, 756, 139386.	1.8	2
4	Electronic, magnetic and optical properties of blue phosphorene doped with Y, Zr, Nb and Mo: A first-principles study. Thin Solid Films, 2021, 720, 138523.	1.8	12
5	Theoretical perspective on the electronic structure and optoelectronic properties of type-II SiC/CrS ₂ van der Waals heterostructure with high carrier mobilities. Journal of Physics Condensed Matter, 2021, 33, 215302.	1.8	7
6	Effects of the vacancy and doping on the electronic and magnetic characteristics of ZrSe2 monolayer: A first-principles investigation. Thin Solid Films, 2021, 732, 138790.	1.8	10
7	Theoretical study on the electronic structure, optical and photocatalytic properties of type-II As/CdO van der Waals heterostructure. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114888.	2.7	11
8	The structure, electronic, magnetic and optical properties of the Co-X (X = B, C, N, O or F) codoped single-layer WS2. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114917.	2.7	4
9	First-principles investigation on electronic structure, magnetic states and optical properties of Mn-doped SnS2 monolayer via strain engineering. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114842.	2.7	10
10	Preserving the half-metallicity at the quaternary Heusler CoFeCrAl (001)-oriented thin films: A first-principles study. Materials Chemistry and Physics, 2020, 240, 122262.	4.0	12
11	Bandgap engineering of the (001) oriented thin-films of the Heusler alloys Co2‒xFexCrAl (x=0.00, 0.25,) Tj ETO	2q110.78	34314 rgBT
12	Theoretical study of half-metallicity in the bulk and (001) oriented thin-films of the CoMn1-xFexCrAl and CoMn1-xCoxCrAl (x=0.00, 0.25, 0.50, 0.75 or 1.00) Heusler alloys. Materials Chemistry and Physics, 2020, 253, 123297.	4.0	1
13	Modulating the electronic, magnetic and optical properties of 1T-SnSe2 monolayer by defects: An ab initio study. Superlattices and Microstructures, 2020, 145, 106621.	3.1	17
14	Improving the magnetic, electronic and optical properties of the monolayer WSe2 via Mn-X (XÂ=ÂO, S, Se) Tj ET	Qq <u>Q</u> Q0 0 r	gBT ₅ /Overlock
15	Effects of 5d transition metals doping on the structural, electronic and magnetic properties of monolayer SnS2. Thin Solid Films, 2020, 705, 138045.	1.8	21
16	Changing the Electronic and Magnetic Properties of Monolayer HfS 2 by Doping and Vacancy Defects: Insight from Firstâ€Principles Calculations. Physica Status Solidi (B): Basic Research, 2020, 257, 1900768.	1.5	7
17	Feasibility of band gap engineering of iron pyrite (FeS2) by codoping Os, Ru or Zn together with O. Materials Chemistry and Physics, 2020, 244, 122742.	4.0	9
18	Stable half-metallicity in the (001)-oriented thin films of Co-doped full-Heusler alloys Ti ₂ Fe _{1â^²<i>x</i>} Co _{<i>x</i>} Sn (<i>x</i> =0.00, 0.25, 0.50, 0.75 or) Tj E	TQ n0 00	rgB2T /Overloc

#	Article	IF	CITATIONS
19	First-principles prediction of the quaternary half-metallic ferromagnets TiZrIrZ (Z = Al, Ga or In) for spintronics applications. Thin Solid Films, 2019, 690, 137564.	1.8	11
20	The electronic, magnetic and optical properties of single-layer CrS2 with vacancy defects. Journal of Magnetism and Magnetic Materials, 2019, 487, 165300.	2.3	16
21	Structural, electronic, magnetic, and optical properties of monolayer WS2 doped with Co-X6 (X = S, N,) Tj ET	Qq1 1 0.7 1.8	′84314 rg8T 10
22	First-principles predictions of half-metallic, magnetic, and optical properties of the (001) surface of Ge doped half-Heusler alloys Mn2GexAs1-x (x = 0.00, 0.25, 0.50, 0.75, and 1.00). Thin Solid Films, 2019, 679 99-109.	, 1.8	4
23	Ferroelectrically mediated optical absorption in short-period (LaMnO3)2/BaTiO3/(SrMnO3)2 superlattices: A viewpoint from first-principles. Journal of Applied Physics, 2019, 125, 065301.	2.5	1
24	Firstâ€Principles Predictions on the Effects of Pb Doping on the Structural, Electronic, Magnetic, and Mechanical Properties of the TiZrCoTl _{1â^'<i>x</i>} Pb <i>_x</i> (<i>x</i> = 0.00,) 1800566.	Ţį ĘTQq0	0,0 rgBT /Ov
25	Magnetic and electronic properties of zigzag boron nitride nanoribbons with nonmetallic atom asymmetric passivation. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 108, 174-180.	2.7	7
26	Half-metallic, Magnetic, and Optical Properties for the (001) Surface of Binary Heusler Alloy MgCl3. Journal of Electronic Materials, 2019, 48, 2563-2571.	2.2	4
27	First-principles study on the structural, electronic, and magnetic properties of bulk and (001) surface of RuS2. Journal of Physics and Chemistry of Solids, 2019, 129, 227-233.	4.0	2
28	The Structural, Electronic, and Magnetic Properties of Cobalt Disulfide Doped with Oxygen, Selenium, or Tellurium. Journal of Electronic Materials, 2019, 48, 483-493.	2.2	0
29	The effect of pressure on the structural, elastic, electronic, magnetic, and optical properties of Mo-doped ZnSe alloy. Journal of Magnetism and Magnetic Materials, 2019, 474, 14-24.	2.3	5
30	First-principles study on the structural, electronic, and magnetic properties in (001) and (110) surfaces of quaternary Heusler alloy TiZrCoAl. Materials Chemistry and Physics, 2019, 224, 93-99.	4.0	6
31	The structural, electronic, magnetic and elastic properties of Ge doped half-Heusler compounds Mn2GexAs1â~'x (x = 0.25, 0.50, 0.75, 1.00). Journal of Magnetism and Magnetic Materials, 2018, 460, 461-4	70. ³	10
32	The structural, electronic, magnetic and optical properties of the half-metallic binary alloys ZCl 3 (Z=Be, Mg, Ca, Sr): A first-principles study. Superlattices and Microstructures, 2018, 118, 230-241.	3.1	9
33	The structural, electronic and magnetic properties of CoS 2 under pressure. Solid State Communications, 2018, 273, 60-65.	1.9	7
34	The structural, electronic and magnetic properties of Co1â^'xFexS2. Materials Research Express, 2018, 5, 016507.	1.6	5
35	The structural, magnetic, electronic and optical properties of the cluster Fe-X6 (X=S, N, O or F) doped monolayer WS2. Superlattices and Microstructures, 2018, 114, 274-283.	3.1	6
36	First-principle study of single TM atoms X (X=Fe, Ru or Os) doped monolayer WS2 systems. Superlattices and Microstructures, 2018, 117, 155-162.	3.1	14

Jian-Min Zhang

#	Article	IF	CITATIONS
37	Structural, electronic and magnetic properties in bulk and various (0â€ ⁻ 0â€ ⁻ 1) surfaces of X2Coln (Xâ€ ⁻ =â€ ⁻ Ti, Zr) Heusler alloy. Applied Surface Science, 2018, 457, 403-410.	6.1	8
38	First-principles study of the structural and electronic properties of CoX0.25S1.75 (X = F, Cl, or Br). Journal of Physics and Chemistry of Solids, 2018, 123, 284-293.	4.0	0
39	The structural, electronic and magnetic properties of a novel quaternary Heusler alloy TiZrCoSn. Journal of Physics and Chemistry of Solids, 2017, 105, 9-15.	4.0	42
40	The structure, electronic, magnetic and optical properties of the Mn doped and Mn-X (XÂ=ÂF, Cl, Br, I and) Tj ETQo 138-145.	0 0 0 rgB 5.5	T /Overlock 28
41	Thermodynamic stability, magnetism and half-metallicity of various (100) surfaces of Heusler alloy Ti2FeSn. Materials Chemistry and Physics, 2017, 192, 253-259.	4.0	15
42	The structural, electronic, magnetic and elastic properties of the binary Heusler alloys Mn ₂ Z (Z  =  As, Sb, Bi): a first-principles study. Materials Research Express, 2017, 4	, ¹ 196501.	11
43	Modulating the Band Gap of the FeS ₂ by O and Se Doping. Journal of Physical Chemistry C, 2017, 121, 19334-19340.	3.1	18
44	Half-metallic properties of CoS ₂ , doped CoN _{0.25} S _{1.75} and CoP _{0.25} S _{1.75} . Materials Research Express, 2017, 4, 086306.	1.6	4
45	Properties of hydrogen doped Cu nanowires and nanocontacts: a density-functional theory study. Materials Research Express, 2017, 4, 095010.	1.6	3
46	First-principles study of the half-metallic and magnetic properties for new yttrium-based full-Heusler alloys Y2CrZ (Z = Al, Ga, In). Solid State Communications, 2017, 264, 19-25.	1.9	13
47	First-principles study on the magnetic and half-metallic properties in bulk and (001) surface of Ti2CoSn Heusler alloy. Thin Solid Films, 2016, 609, 19-24.	1.8	5
48	Electronic structures and magnetic properties of the transition-metal atoms (Mn, Fe, Co and Ni) doped WS2: A first-principles study. Superlattices and Microstructures, 2016, 98, 148-157.	3.1	28
49	The structural, electronic, magnetic and mechanical properties of quaternary Heusler alloys ZrTiCrZ(Z  =  Al, Ga, In, Si, Ge, Sn): a first-principles study. Journal Physics D: Applied Physics, 202 255002.	16 , 849,	35
50	First-principles study on the magnetic and half-metallic properties of the Heusler alloy Ti 2 CoSn (110) surface. Surface Science, 2016, 644, 109-112.	1.9	9
51	First-principles study of transition-metal atoms adsorption on GaN nanotube. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 22-27.	2.7	14
52	Calculation of the surface energy of FCC metals with modified embedded-atom method. Applied Surface Science, 2004, 229, 34-42.	6.1	267