Giampiero Iaffaldano

List of Publications by Citations

Source: https://exaly.com/author-pdf/8018945/giampiero-iaffaldano-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28 837 19 32 h-index g-index citations papers 8.4 958 4.56 35 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
32	Lithospheric controls on magma composition along Earth's longest continental hotspot track. Nature, 2015, 525, 511-4	50.4	99
31	Feedback between mountain belt growth and plate convergence. <i>Geology</i> , 2006 , 34, 893	5	95
30	Rapid South Atlantic spreading changes and coeval vertical motion in surrounding continents: Evidence for temporal changes of pressure-driven upper mantle flow. <i>Tectonics</i> , 2014 , 33, 1304-1321	4.3	64
29	High-resolution Neogene and Quaternary estimates of Nubia-Eurasia-North America Plate motion. <i>Geophysical Journal International</i> , 2015 , 203, 416-427	2.6	51
28	The role of the Zagros orogeny in slowing down Arabia-Eurasia convergence since ~5 Ma. <i>Tectonics</i> , 2013 , 32, 351-363	4.3	48
27	Reconstructing plate-motion changes in the presence of finite-rotations noise. <i>Nature Communications</i> , 2012 , 3, 1048	17.4	38
26	Relating rapid plate-motion variations to plate-boundary forces in global coupled models of the mantle/lithosphere system: Effects of topography and friction. <i>Tectonophysics</i> , 2009 , 474, 393-404	3.1	36
25	Monsoon speeds up Indian plate motion. Earth and Planetary Science Letters, 2011, 304, 503-510	5.3	35
24	Rapid Plate Motion Variations Through Geological Time: Observations Serving Geodynamic Interpretation. <i>Annual Review of Earth and Planetary Sciences</i> , 2015 , 43, 571-592	15.3	33
23	Role of mantle flow in Nubia-Somalia plate divergence. <i>Geophysical Research Letters</i> , 2015 , 42, 290-296	4.9	30
22	Strong plate coupling along the NazcaBouth America convergent margin. <i>Geology</i> , 2008 , 36, 443	5	30
21	The concurrent emergence and causes of double volcanic hotspot tracks on the Pacific plate. <i>Nature</i> , 2017 , 545, 472-476	50.4	28
20	REDBACK: Open-source software for efficient noise-reduction in plate kinematic reconstructions. <i>Geochemistry, Geophysics, Geosystems</i> , 2014 , 15, 1663-1670	3.6	26
19	Pressure-Driven Poiseuille Flow: A Major Component of the Torque-Balance Governing Pacific Plate Motion. <i>Geophysical Research Letters</i> , 2018 , 45, 117-125	4.9	24
18	Slow-downs and speed-ups of India E urasia convergence since ~20Ma: Data-noise, uncertainties and dynamic implications. <i>Earth and Planetary Science Letters</i> , 2013 , 367, 146-156	5.3	24
17	Role of lithosphere in intra-continental deformation: Central Australia. <i>Gondwana Research</i> , 2013 , 24, 958-968	5.1	24
16	Topography growth drives stress rotations in the central Andes: Observations and models. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	23

LIST OF PUBLICATIONS

Bayesian noise-reduction in Arabia/Somalia and Nubia/Arabia finite rotations since ~20 Ma: Implications for Nubia/Somalia relative motion. <i>Geochemistry, Geophysics, Geosystems</i> , 2014 , 15, 845-85	54 ^{3.6}	22
The strength of large-scale plate boundaries: Constraints from the dynamics of the Philippine Sea plate since ~5Ma. <i>Earth and Planetary Science Letters</i> , 2012 , 357-358, 21-30	5.3	22
Late Miocene Pacific plate kinematic change explained with coupled global models of mantle and lithosphere dynamics. <i>Geophysical Research Letters</i> , 2017 , 44, 7177-7186	4.9	16
Mountain belt growth inferred from histories of past plate convergence: A new tectonic inverse problem. <i>Earth and Planetary Science Letters</i> , 2007 , 260, 516-523	5.3	14
Indian Ocean floor deformation induced by the Reunion plume rather than the Tibetan Plateau. <i>Nature Geoscience</i> , 2018 , 11, 362-366	18.3	13
Pacific plate-motion change at the time of the Hawaiian-Emperor bend constrains the viscosity of Earth's asthenosphere. <i>Geophysical Research Letters</i> , 2014 , 41, 3398-3406	4.9	12
A geodynamical view on the steadiness of geodetically derived rigid plate motions over geological time. <i>Geochemistry, Geophysics, Geosystems</i> , 2014 , 15, 238-254	3.6	9
Varying mechanical coupling along the Andean margin: Implications for trench curvature, shortening and topography. <i>Tectonophysics</i> , 2012 , 526-529, 16-23	3.1	8
Late Neogene changes in North America and Antarctica absolute plate motions inferred from the Mid-Atlantic and Southwest Indian Ridges spreading histories. <i>Geophysical Research Letters</i> , 2016 , 43, 8466-8472	4.9	6
Impact of uncertain reference-frame motions in plate kinematic reconstructions: A theoretical appraisal. <i>Earth and Planetary Science Letters</i> , 2017 , 458, 349-356	5.3	3
Pressure-Driven Poiseuille Flow Inherited From Mesozoic Mantle Circulation Led to the Eocene Separation of Australia and Antarctica. <i>Journal of Geophysical Research: Solid Earth</i> , 2021 , 126, e2020JE	30 ³ 1 ⁹ 94	.5 ²
Using Rigid Microplate Motions to Detect the Stress Buildup Preceding Large Earthquakes: A Feasibility Test Based on Synthetic Models. <i>Journal of Geophysical Research: Solid Earth</i> , 2019 , 124, 134	68 : 634	8 ⁵
Growth of Neogene Andes linked to changes in plate convergence using high-resolution kinematic models <i>Nature Communications</i> , 2022 , 13, 1339	17.4	1
Has the Tibetan Plateau risen in the Early/Mid-Miocene? Constraints from plate-motion reconstructions and seismicity of the Indian Ocean lithosphere. <i>Geophysical Journal International</i> , 2021 , 225, 1349-1358	2.6	Ο
Decadal change of the Apulia microplate motion preceding the M 6.4, 26 November 2019 Durr (Albania) earthquake. <i>Earth and Planetary Science Letters</i> , 2022 , 584, 117505	5.3	
	Implications for Nubia/Somalia relative motion. <i>Geochemistry, Geophysics, Geosystems,</i> 2014, 15, 845-855. The strength of large-scale plate boundaries: Constraints from the dynamics of the Philippine Sea plate since ~5Ma. <i>Earth and Planetary Science Letters,</i> 2012, 357-358, 21-30. Late Miocene Pacific plate kinematic change explained with coupled global models of mantle and lithosphere dynamics. <i>Geophysical Research Letters,</i> 2017, 44, 7177-7186. Mountain belt growth inferred from histories of past plate convergence: A new tectonic inverse problem. <i>Earth and Planetary Science Letters,</i> 2007, 260, 516-523. Indian Ocean floor deformation induced by the Reunion plume rather than the Tibetan Plateau. <i>Nature Geoscience,</i> 2018, 11, 362-366. Pacific plate-motion change at the time of the Hawaiian-Emperor bend constrains the viscosity of Earth's asthenosphere. <i>Geophysical Research Letters,</i> 2014, 41, 3398-3406. A geodynamical view on the steadiness of geodetically derived rigid plate motions over geological time. <i>Geochemistry, Geophysics, Geosystems,</i> 2014, 15, 238-254. Varying mechanical coupling along the Andean margin: Implications for trench curvature, shortening and topography. <i>Tectonophysics,</i> 2012, 526-529, 16-23. Late Neogene changes in North America and Antarctica absolute plate motions inferred from the Mid-Atlantic and Southwest Indian Ridges spreading histories. <i>Geophysical Research Letters,</i> 2016, 43, 8466-8472. Impact of uncertain reference-frame motions in plate kinematic reconstructions: A theoretical appraisal. <i>Earth and Planetary Science Letters,</i> 2017, 458, 349-356. Pressure-Driven Poiseuille Flow Inherited From Mesozoic Mantle Circulation Led to the Eocene Separation of Australia and Antarctica. <i>Journal of Geophysical Research: Solid Earth,</i> 2021, 126, e2020 JE Using Rigid Microplate Motions to Detect the Stress Buildup Preceding Large Earthquakes: A Feasibility Test Based on Synthetic Models. <i>Journal of Geophysical Research: Solid Earth,</i> 2019, 124, 134. Growth of Neogene Andes linked	Implications for Nubia/Somalia relative motion. Geochemistry, Geophysics, Geosystems, 2014, 15, 845-854 ^{3,6} The strength of large-scale plate boundaries: Constraints from the dynamics of the Philippine Sea plate since -5Ma. Earth and Planetary Science Letters, 2012, 357-358, 21-30 Late Miocene Pacific plate kinematic change explained with coupled global models of mantle and lithosphere dynamics. Geophysical Research Letters, 2017, 44, 7177-7186 49 Mountain belt growth inferred from histories of past plate convergence: A new tectonic inverse problem. Earth and Planetary Science Letters, 2007, 260, 516-523 Indian Ocean floor deformation induced by the Reunion plume rather than the Tibetan Plateau. Nature Geoscience, 2018, 11, 362-366 Pacific plate-motion change at the time of the Hawaiian-Emperor bend constrains the viscosity of Earth's asthenosphere. Geophysical Research Letters, 2014, 41, 3398-3406 49 A geodynamical view on the steadiness of geodetically derived rigid plate motions over geological time. Geochemistry, Geophysics, Geosystems, 2014, 15, 238-254 Varying mechanical coupling along the Andean margin: Implications for trench curvature, shortening and topography. Tectonophysics, 2012, 526-529, 16-23 Late Neogene changes in North America and Antarctica absolute plate motions inferred from the Mid-Atlantic and Southwest Indian Ridges spreading histories. Geophysical Research Letters, 2016, 49 43, 8466-8472 Impact of uncertain reference-frame motions in plate kinematic reconstructions: A theoretical appraisal. Earth and Planetary Science Letters, 2017, 458, 349-356 Pressure-Driven Poiseuille Flow Inherited From Mesozoic Mantle Circulation Led to the Eocene Separation of Australia and Antarctica. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB0 ³ /1944 Using Rigid Microplate Motions to Detect the Stress Buildup Preceding Large Earthquakes: A Feasibility Test Based on Synthetic Models. Journal of Geophysical Research: Solid Earth, 2019, 124, 13468-6134 Growth of Neogene Andes