
Kevin P Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8018626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Generalized Framework for Service Restoration in a Resilient Power Distribution System. IEEE Systems Journal, 2022, 16, 252-263.	4.6	22
2	Critical values of cyber parameters in a dynamic microgrid system. IET Generation, Transmission and Distribution, 2022, 16, 99-109.	2.5	5
3	A Framework for Coordinated Self-Assembly of Networked Microgrids Using Consensus Algorithms. IEEE Access, 2022, 10, 3864-3878.	4.2	11
4	A Data-Driven Algorithm for Enabling Delay Tolerance in Resilient Microgrid Controls Using Dynamic Mode Decomposition. IEEE Transactions on Smart Grid, 2022, 13, 2500-2510.	9.0	7
5	Erratum to "Resilience-Motivated Distribution System Restoration Considering Electricity-Water-Gas Interdependency―[Nov 21 4799-4812]. IEEE Transactions on Smart Grid, 2022, 13, 2495-2495.	9.0	0
6	Rapid Evaluation and Response to Impacts on Critical End-Use Loads Following Natural Hazard-Driven Power Outages: A Modular and Responsive Geospatial Technology. International Journal of Disaster Risk Science, 2022, 13, 415-434.	2.9	4
7	Prototypical communication systems for electrical distribution system analysis: Design basis and exemplification through coâ€simulation. IET Smart Grid, 2022, 5, 363-379.	2.2	1
8	Study of Microgrid Resilience Through Co-Simulation of Power System Dynamics and Communication Systems. IEEE Transactions on Industrial Informatics, 2021, 17, 1905-1915.	11.3	11
9	Modeling of Grid-Forming and Grid-Following Inverters for Dynamic Simulation of Large-Scale Distribution Systems. IEEE Transactions on Power Delivery, 2021, 36, 2035-2045.	4.3	109
10	Resilience-Motivated Distribution System Restoration Considering Electricity-Water-Gas Interdependency. IEEE Transactions on Smart Grid, 2021, 12, 4799-4812.	9.0	22
11	A Multi-Site Networked Hardware-in-the-Loop Platform for Evaluation of Interoperability and Distributed Intelligence at Grid-Edge. IEEE Open Access Journal of Power and Energy, 2021, 8, 460-471.	3.4	5
12	Modeling and Simulation of Inrush Currents in Harmonic Domain. , 2021, , .		1
13	Comparison of Electromagnetic Transient and Phasor-based Simulation for the Stability of Grid-Forming-Inverter-based Microgrids. , 2021, , .		9
14	Enhancing Responsiveness and Resilience with Distributed Applications in the Grid. , 2021, , .		6
15	Optimized Dispatch of Distributed Energy Resources for Resiliency and Power Quality Improvements at the Grid-Edge. , 2021, , .		2
16	Quasi-Static Time Series Fatigue Simulation for PV Inverter Semiconductors with Long-Term Solar Profile. , 2021, , .		1
17	Using Distributed Dynamic Voltage Restorers to Improve the Frequency Stability of Low-Inertia Networked Microgrids. , 2021, , .		0
18	Resilience Evaluation of Advanced Distribution Grids with Self-healing Control, Microgrid and Transactable Reactive Power. , 2021, , .		2

#	Article	IF	CITATIONS
19	Impact of Self-healing Control on Reliability Evaluation in Distribution System with Microgrid. , 2021, ,		0
20	A Comparative Study of Two Widely Used Grid-Forming Droop Controls on Microgrid Small-Signal Stability. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 963-975.	5.4	139
21	Microgrid Stability Definitions, Analysis, and Examples. IEEE Transactions on Power Systems, 2020, 35, 13-29.	6.5	422
22	A Two-Layer Distributed Cooperative Control Method for Islanded Networked Microgrid Systems. IEEE Transactions on Smart Grid, 2020, 11, 942-957.	9.0	71
23	Aging Effect Analysis of PV Inverter Semiconductors for Ancillary Services Support. IEEE Open Journal of Industry Applications, 2020, 1, 157-170.	6.5	3
24	Dynamics and control of microgrids as a resiliency source. International Transactions on Electrical Energy Systems, 2020, 30, e12610.	1.9	9
25	Improving primary frequency response in networked microgrid operations using multilayer perceptronâ€driven reinforcement learning. IET Smart Grid, 2020, 3, 500-507.	2.2	5
26	Distributed Small-Signal Stability Conditions for Inverter-Based Unbalanced Microgrids. IEEE Transactions on Power Systems, 2020, 35, 3981-3990.	6.5	22
27	Sliderâ€based multiâ€objective control for resilient microgrids. IET Generation, Transmission and Distribution, 2020, 14, 2528-2534.	2.5	3
28	Networked Microgrid Operations: Supporting a Resilient Electric Power Infrastructure. IEEE Electrification Magazine, 2020, 8, 70-79.	1.8	10
29	Quantitative Evaluation of Reliability Improvement: Case Study on a Self-healing Distribution System. , 2020, , .		3
30	Advanced FLISR With Intentional Islanding Operations in an ADMS Environment Using GridAPPS-D. IEEE Access, 2020, 8, 113766-113778.	4.2	24
31	Calibrating synchronous-generator-interfaced DG models in microgrids using multiple event data. International Journal of Electrical Power and Energy Systems, 2020, 120, 105989.	5.5	8
32	Studying impacts of communication system performance on dynamic stability of networked microgrid. IET Smart Grid, 2020, 3, 667-676.	2.2	11
33	Learningâ€based load control to support resilient networked microgrid operations. IET Smart Grid, 2020, 3, 697-704.	2.2	1
34	Conservation voltage reduction (CVR) via twoâ€ŧimescale control in unbalanced power distribution systems. IET Smart Grid, 2020, 3, 801-813.	2.2	3
35	Dynamic-Phasor Model of Transformer Inrush Simulation for Unbalanced Distribution System. , 2020, ,		1
36	Improving Primary Frequency Response to Support Networked Microgrid Operations. IEEE Transactions on Power Systems, 2019, 34, 659-667.	6.5	53

#	Article	IF	CITATIONS
37	Modeling of Grid-Forming Inverters for Transient Stability Simulations of an all Inverter-based Distribution System. , 2019, , .		6
38	A Distributed Power System Control Architecture for Improved Distribution System Resiliency. IEEE Access, 2019, 7, 9957-9970.	4.2	52
39	Enhancing Distribution System Resiliency through a Novel Transactive Energy Systems Framework. , 2019, , .		11
40	Load Modeling with Smart Meter Data for Advanced Volt-VAR Optimization Applications. , 2019, , .		1
41	Identifying Parameter Space for Robust Stability in Nonlinear Networks: A Microgrid Application. , 2019, , .		5
42	Coordinated Power and Energy Management Using Cluster of Microgrids to Improve Grid Availability and Resiliency. , 2019, , .		4
43	Bi-Level Volt-VAR Optimization to Coordinate Smart Inverters With Voltage Control Devices. IEEE Transactions on Power Systems, 2019, 34, 1801-1813.	6.5	112
44	Coordinating Multiple Sources for Service Restoration to Enhance Resilience of Distribution Systems. IEEE Transactions on Smart Grid, 2019, 10, 5781-5793.	9.0	157
45	DGs for Service Restoration to Critical Loads in a Secondary Network. IEEE Transactions on Smart Grid, 2019, 10, 435-447.	9.0	90
46	Adaptive Dynamic Simulations for Distribution Systems Using Multistate Load Models. IEEE Transactions on Smart Grid, 2019, 10, 2257-2266.	9.0	10
47	Modeling Load Dynamics to Support Resiliency-Based Operations in Low-Inertia Microgrids. IEEE Transactions on Smart Grid, 2019, 10, 2726-2737.	9.0	32
48	Analytic Considerations and Design Basis for the IEEE Distribution Test Feeders. IEEE Transactions on Power Systems, 2018, 33, 3181-3188.	6.5	371
49	Microgrids for Service Restoration to Critical Load in a Resilient Distribution System. IEEE Transactions on Smart Grid, 2018, 9, 426-437.	9.0	319
50	Enabling Resiliency Operations Across Multiple Microgrids With Grid Friendly Appliance Controllers. IEEE Transactions on Smart Grid, 2018, 9, 4755-4764.	9.0	59
51	Leveraging Standards to Create an Open Platform for the Development of Advanced Distribution Applications. IEEE Access, 2018, 6, 37361-37370.	4.2	36
52	Grid Friendly Appliance Controllers to Increase the Dynamic Stability of Networked Resiliency-based Microgrids. , 2018, , .		4
53	Simulation of Inrush Dynamics for Unbalanced Distribution Systems Using Dynamic-Phasor Models. IEEE Transactions on Power Systems, 2017, 32, 633-642.	6.5	28
54	Microgrid Controller Design, Implementation, and Deployment: A Journey from Conception to Implementation at the Philadelphia Navy Yard. IEEE Power and Energy Magazine, 2017, 15, 50-62.	1.6	18

#	Article	IF	CITATIONS
55	Evaluating the feasibility to use microgrids as a resiliency resource. , 2016, , .		14
56	Reliability assessment of distribution systems incorporating feeder restoration actions. , 2016, , .		5
57	Three-Phase Unbalanced Transient Dynamics and Powerflow for Modeling Distribution Systems With Synchronous Machines. IEEE Transactions on Power Systems, 2016, 31, 105-115.	6.5	44
58	Evaluating the Feasibility to Use Microgrids as a Resiliency Resource. IEEE Transactions on Smart Grid, 2016, , 1-1.	9.0	77
59	Off-line tracking of series parameters in distribution systems using AMI data. Electric Power Systems Research, 2016, 134, 205-212.	3.6	4
60	Evaluating the Magnitude and Duration of Cold Load Pick-up on Residential Distribution Feeders Pub<br _newline ?>Using Multi-State Load Models. IEEE Transactions on Power Systems, 2016, 31, 3765-3774.	6.5	60
61	Placement of Remote-Controlled Switches to Enhance Distribution System Restoration Capability. IEEE Transactions on Power Systems, 2016, 31, 1139-1150.	6.5	146
62	Estimating System-Wide Impacts of Smart Grid Demonstrations. IEEE Transactions on Power Systems, 2015, 30, 980-988.	6.5	0
63	A Power Hardware-in-the-Loop Platform With Remote Distribution Circuit Cosimulation. IEEE Transactions on Industrial Electronics, 2015, 62, 2236-2245.	7.9	91
64	Toward a resilient distribution system. , 2015, , .		31
65	Estimating power system dynamic states using extended Kalman Filter. , 2014, , .		10
66	Microgrids as a resiliency resource. , 2014, , .		6
67	IEEE 342-node low voltage networked test system. , 2014, , .		22
68	A Method for Evaluating Volt-VAR Optimization Field Demonstrations. IEEE Transactions on Smart Grid, 2014, 5, 1696-1703.	9.0	24
69	Distribution System Restoration With Microgrids Using Spanning Tree Search. IEEE Transactions on Power Systems, 2014, 29, 3021-3029.	6.5	298
70	Volt-VAR optimization on American Electric Power feeders in Northeast Columbus. , 2012, , .		22
71	Evaluating conservation voltage reduction: An application of GridLAB-D: An open source software package. , 2011, , .		27
72	Effects of distributed energy resources on conservation voltage reduction (CVR). , 2011, , .		46

#	Article	IF	CITATIONS
73	Analysis of distribution level residential demand response. , 2011, , .		23
74	Analysis of Residential Demand Response and double-auction markets. , 2011, , .		116
75	Multi-State Load Models for Distribution System Analysis. IEEE Transactions on Power Systems, 2011, 26, 2425-2433.	6.5	92
76	Controlled Partitioning of a Power Network Considering Real and Reactive Power Balance. IEEE Transactions on Smart Grid, 2010, 1, 261-269.	9.0	123
77	Voltage control devices on the IEEE 8500 node test feeder. , 2010, , .		8
78	Detailed end use load modeling for distribution system analysis. , 2010, , .		31
79	Distribution power flow for smart grid technologies. , 2009, , .		45
80	Vulnerability assessment for cascading failures in electric power systems. , 2009, , .		51
81	A Taxonomy of North American radial distribution feeders. , 2009, , .		61
82	A Novel Visualization Technique for Electric Power Grid Analytics. IEEE Transactions on Visualization and Computer Graphics, 2009, 15, 410-423.	4.4	57
83	Assessment of Interactions Between Power and Telecommunications Infrastructures. IEEE Transactions on Power Systems, 2006, 21, 1123-1130.	6.5	50
84	Topology Error Identification for the NEPTUNE Power System. IEEE Transactions on Power Systems, 2005, 20, 1224-1232.	6.5	13