Zygmunt S Derewenda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8018380/publications.pdf Version: 2024-02-01

109 papers	9,026 citations	57758 44 h-index	42399 92 g-index
111	111	111	9308
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	On the centennials of the discoveries of the hydrogen bond and the structure of the water molecule: the short life and work of Eustace Jean Cuy (1897–1925). Acta Crystallographica Section A: Foundations and Advances, 2021, 77, 362-378.	0.1	1
2	<scp>C─H</scp> â< O hydrogen bonds in kinaseâ€inhibitor interfaces. IUBMB Life, 2020, 72, 1233-1242.	3.4	7
3	Architecture of the Cellulose Synthase Outer Membrane Channel and Its Association with the Periplasmic TPR Domain. Structure, 2019, 27, 1855-1861.e3.	3.3	41
4	RSK2 contributes to myogenic vasoconstriction of resistance arteries by activating smooth muscle myosin and the Na ⁺ /H ⁺ exchanger. Science Signaling, 2018, 11, .	3.6	13
5	The structure of the C-terminal domain of the nucleoprotein from the Bundibugyo strain of the Ebola virus in complex with a pan-specific synthetic Fab. Acta Crystallographica Section D: Structural Biology, 2018, 74, 681-689.	2.3	9
6	The "Sticky Patch―Model of Crystallization and Modification of Proteins for Enhanced Crystallizability. Methods in Molecular Biology, 2017, 1607, 77-115.	0.9	17
7	Crystal structures of the methyltransferase and helicase from the ZIKA 1947 MR766 Uganda strain. Acta Crystallographica Section D: Structural Biology, 2017, 73, 767-774.	2.3	10
8	Molecular architecture of the nucleoprotein C-terminal domain from the Ebola and Marburg viruses. Acta Crystallographica Section D: Structural Biology, 2016, 72, 49-58.	2.3	14
9	Bacterial Expression, Purification and In Vitro Phosphorylation of Full-Length Ribosomal S6 Kinase 2 (RSK2). PLoS ONE, 2016, 11, e0164343.	2.5	6
10	Adventures in cooperativity. Postepy Biochemii, 2016, 62, 286-297.	0.2	1
11	The structure of the C-terminal domain of the <i>Zaire ebolavirus</i> nucleoprotein. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2420-2429.	2.5	39
12	Salvage or Recovery of Failed Targets by Mutagenesis to Reduce Surface Entropy. Methods in Molecular Biology, 2014, 1140, 201-209.	0.9	13
13	The unusual mechanism of inhibition of the p90 ribosomal S6 kinase (RSK) by flavonol rhamnosides. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1285-1291.	2.3	7
14	Agonist-induced Ca2+ Sensitization in Smooth Muscle. Journal of Biological Chemistry, 2013, 288, 34030-34040.	3.4	21
15	Dynactin helps target Polo-like kinase 1 to kinetochores via its left-handed beta-helical p27 subunit. EMBO Journal, 2013, 32, 1023-1035.	7.8	46
16	Identification of quercitrin as an inhibitor of the p90 S6 ribosomal kinase (RSK): structure of its complex with the N-terminal domain of RSK2 at 1.8â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 266-275.	2.5	15
17	The p90 Ribosomal S6 Kinase (RSK) Is a Mediator of Smooth Muscle Contractility. PLoS ONE, 2013, 8, e58703.	2.5	14
18	Insights into the Inhibition of the p90 Ribosomal S6 Kinase (RSK) by the Flavonol Glycoside SL0101 from the 1.5 Ã Crystal Structure of the N-Terminal Domain of RSK2 with Bound Inhibitor. Biochemistry, 2012, 51, 6499-6510.	2.5	39

ZYGMUNT S DEREWENDA

#	Article	IF	CITATIONS
19	Structural Features and Chaperone Activity of the NudC Protein Family. Journal of Molecular Biology, 2011, 409, 722-741.	4.2	38
20	Abstractions, algorithms and data structures for structural bioinformatics inPyCogent. Journal of Applied Crystallography, 2011, 44, 424-428.	4.5	4
21	It's all in the crystals…. Acta Crystallographica Section D: Biological Crystallography, 2011, 67, 243-248.	2.5	29
22	p63RhoGEF Couples G _{αq/11} -Mediated Signaling to Ca ²⁺ Sensitization of Vascular Smooth Muscle Contractility. Circulation Research, 2011, 109, 993-1002.	4.5	66
23	The N-terminal coiled-coil of Ndel1 is a regulated scaffold that recruits LIS1 to dynein. Journal of Cell Biology, 2011, 192, 433-445.	5.2	78
24	Insights into the Molecular Activation Mechanism of the RhoA-specific Guanine Nucleotide Exchange Factor, PDZRhoGEF. Journal of Biological Chemistry, 2011, 286, 35163-35175.	3.4	23
25	Application of protein engineering to enhance crystallizability and improve crystal properties. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 604-615.	2.5	98
26	The solution structure and dynamics of the DHâ€PH module of PDZRhoGEF in isolation and in complex with nucleotideâ€free RhoA. Protein Science, 2009, 18, 2067-2079.	7.6	18
27	Structure of <i>Thermotoga maritima</i> TM0439: implications for the mechanism of bacterial GntR transcription regulators with Zn ²⁺ -binding FCD domains. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 356-365.	2.5	31
28	The role of entropy and polarity in intermolecular contacts in protein crystals. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 500-509.	2.5	31
29	On the mechanism of autoinhibition of the RhoA-specific nucleotide exchange factor PDZRhoGEF. BMC Structural Biology, 2009, 9, 36.	2.3	24
30	Structure and Function of Bacillus subtilis YphP, a Prokaryotic Disulfide Isomerase with a CXC Catalytic Motif,. Biochemistry, 2009, 48, 8664-8671.	2.5	37
31	On wine, chirality and crystallography. Acta Crystallographica Section A: Foundations and Advances, 2008, 64, 246-258.	0.3	28
32	Degenerate specificity of PDZ domains from RhoA-specific nucleotide exchange factors PDZRhoGEF and LARG. Acta Biochimica Polonica, 2008, 55, 269-80.	0.5	3
33	Protein crystallization in drug design: towards a rational approach. Expert Opinion on Drug Discovery, 2007, 2, 1329-1340.	5.0	3
34	Bivalent Peptides as Models for Multimeric Targets of PDZ Domains. ChemBioChem, 2007, 8, 443-452.	2.6	19
35	Protein crystallization by surface entropy reduction: optimization of the SER strategy. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 636-645.	2.5	146
36	Structure of the <i>Bacillus subtilis</i> OhrB hydroperoxide-resistance protein in a fully oxidized state. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 1269-1273.	2.5	4

ZYGMUNT S DEREWENDA

#	Article	IF	CITATIONS
37	The Structure of the Coiled-Coil Domain of Ndel1 and the Basis of Its Interaction with Lis1, the Causal Protein of Miller-Dieker Lissencephaly. Structure, 2007, 15, 1467-1481.	3.3	74
38	Toward rational protein crystallization: A Web server for the design of crystallizable protein variants. Protein Science, 2007, 16, 1569-1576.	7.6	247
39	The Dimerization Mechanism of LIS1 and its Implication for Proteins Containing the LisH Motif. Journal of Molecular Biology, 2006, 357, 621-631.	4.2	47
40	Entropy and surface engineering in protein crystallization. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 116-124.	2.5	207
41	The DC-module of doublecortin: Dynamics, domain boundaries, and functional implications. Proteins: Structure, Function and Bioinformatics, 2006, 64, 874-882.	2.6	15
42	The Molecular Basis of RhoA Specificity in the Guanine Nucleotide Exchange Factor PDZ-RhoGEF. Journal of Biological Chemistry, 2006, 281, 32891-32897.	3.4	40
43	Towards a highâ€resolution structure of dynactin. FASEB Journal, 2006, 20, A95.	0.5	0
44	Probing the Supramodular Architecture of a Multidomain Protein: The Structure of Syntenin in Solution. Structure, 2005, 13, 319-327.	3.3	19
45	B. subtilis ykuD protein at 2.0 Ã resolution: Insights into the structure and function of a novel, ubiquitous family of bacterial enzymes. Proteins: Structure, Function and Bioinformatics, 2005, 62, 144-151.	2.6	94
46	The molecular structure and catalytic mechanism of a quorum-quenching N-acyl-L-homoserine lactone hydrolase. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17606-17611.	7.1	106
47	The Structure of Yersinia pestis V-Antigen, an Essential Virulence Factor and Mediator of Immunity against Plague. Structure, 2004, 12, 301-306.	3.3	100
48	Rational Protein Crystallization by Mutational Surface Engineering. Structure, 2004, 12, 529-535.	3.3	254
49	The Structure of the N-Terminal Domain of the Product of the Lissencephaly Gene Lis1 and Its Functional Implications. Structure, 2004, 12, 987-998.	3.3	106
50	The Crystal Structure of the Reduced, Zn2+-Bound Form of the B. subtilis Hsp33 Chaperone and Its Implications for the Activation Mechanism. Structure, 2004, 12, 1901-1907.	3.3	77
51	The Crystal Structure of RhoA in Complex with the DH/PH Fragment of PDZRhoGEF, an Activator of the Ca2+ Sensitization Pathway in Smooth Muscle. Structure, 2004, 12, 1955-1965.	3.3	79
52	The impact of Lys→Arg surface mutations on the crystallization of the globular domain of RhoGDI. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 275-280.	2.5	38
53	Preliminary crystallographic analysis of the complex of the human GTPase RhoA with the DH/PH tandem of PDZ-RhoGEF. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 740-742.	2.5	9
54	Harvesting the high-hanging fruit: the structure of theYdeNgene product fromBacillus subtilisat 1.8â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1101-1107.	2.5	23

#	Article	IF	CITATIONS
55	The use of recombinant methods and molecular engineering in protein crystallization. Methods, 2004, 34, 354-363.	3.8	141
56	Coupling PAF Signaling to Dynein Regulation. Neuron, 2004, 44, 809-821.	8.1	72
57	The PDZ2 Domain of Syntenin at Ultra-high Resolution: Bridging the Cap Between Macromolecular and Small Molecule Crystallography. Journal of Molecular Biology, 2004, 338, 483-493.	4.2	47
58	The Structure and Ligand Binding Properties of the B.subtilis YkoF Gene Product, a Member of a Novel Family of Thiamin/HMP-binding Proteins. Journal of Molecular Biology, 2004, 343, 395-406.	4.2	43
59	Assignment of 1H, 13C and 15N resonances of the N-terminal microtubule-binding domain of human doublecortin. Journal of Biomolecular NMR, 2003, 25, 81-82.	2.8	2
60	PDZ Tandem of Human Syntenin. Structure, 2003, 11, 459-468.	3.3	90
61	Molecular Roots of Degenerate Specificity in Syntenin's PDZ2 Domain. Structure, 2003, 11, 845-853.	3.3	83
62	Purification and crystallization of the N-terminal domain from the human doublecortin-like kinase. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 502-505.	2.5	8
63	Structure of a constitutively activated RhoA mutant (Q63L) at 1.55â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 876-880.	2.5	28
64	The DCX-domain tandems of doublecortin and doublecortin-like kinase. Nature Structural and Molecular Biology, 2003, 10, 324-333.	8.2	122
65	Molecular Basis of Mitomycin C Resistance in Streptomyces. Structure, 2002, 10, 933-942.	3.3	30
66	Substrate-selectivity in acylhydrolases: a cautionary tale. Colloids and Surfaces B: Biointerfaces, 2002, 26, 31-35.	5.0	2
67	The structure of the FERM domain of merlin, the neurofibromatosis type 2 gene product. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 381-391.	2.5	45
68	The impact of Glu→Ala and Glu→Asp mutations on the crystallization properties of RhoGDI: the structure of RhoGDI at 1.3â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1983-1991.	2.5	64
69	Expression, Purification, and Crystallization of the RGS-like Domain from the Rho Nucleotide Exchange Factor, PDZ-RhoGEF, Using the Surface Entropy Reduction Approach. Protein Expression and Purification, 2001, 21, 412-416.	1.3	29
70	Protein crystallization by rational mutagenesis of surface residues: Lys to Ala mutations promote crystallization of RhoGDI. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 679-688.	2.5	104
71	Structure of the RGS-like Domain from PDZ-RhoGEF. Structure, 2001, 9, 559-569.	3.3	73
72	Preparation and crystal structure of the recombinant α1/α2 catalytic heterodimer of bovine brain platelet-activating factor acetylhydrolase Ib. Protein Engineering, Design and Selection, 2001, 14, 513-519.	2.1	19

ZYGMUNT S DEREWENDA

#	Article	IF	CITATIONS
73	Homologs of the ?- and ?-subunits of mammalian brain platelet-activating factor acetylhydrolase Ib in theDrosophila melanogaster genome. , 2000, 39, 1-8.		25
74	Crystal structure of the Escherichia coli thioesterase II, a homolog of the human Nef binding enzyme. Nature Structural Biology, 2000, 7, 555-559.	9.7	105
75	Crystal Structure of the Human Acyl Protein Thioesterase I from a Single X-Ray Data Set to 1.5 Ã Structure, 2000, 8, 1137-1146.	3.3	124
76	Substrate Specificity in Glycoside Hydrolase Family 10. Journal of Biological Chemistry, 2000, 275, 23020-23026.	3.4	70
77	Structure of the BH Domain from Graf and Its Implications for Rho GTPase Recognition. Journal of Biological Chemistry, 2000, 275, 38605-38610.	3.4	22
78	Domain Identification of Hormone-sensitive Lipase by Circular Dichroism and Fluorescence Spectroscopy, Limited Proteolysis, and Mass Spectrometry. Journal of Biological Chemistry, 1999, 274, 15382-15388.	3.4	30
79	How RhoGDI binds Rho. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1503-1515.	2.5	65
80	Crystal structure of brefeldin A esterase, a bacterial homolog of the mammalian hormone-sensitive lipase. Nature Structural Biology, 1999, 6, 340-345.	9.7	135
81	The name is bondH bond. , 1999, 6, 403-406.		156
82	Biochemical and molecular biological characterization of a lipase produced by the fungusRhizopus delemar. Lipid - Fett, 1999, 101, 364-370.	0.4	9
83	PAF-acetylhydrolases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1441, 229-236.	2.4	30
84	Overcoming Expression and Purification Problems of RhoGDI Using a Family of "Parallel―Expression Vectors. Protein Expression and Purification, 1999, 15, 34-39.	1.3	606
85	Structure of a microbial homologue of mammalian platelet-activating factor acetylhydrolases: Streptomyces exfoliatus lipase at 1.9 å resolution. Structure, 1998, 6, 511-519.	3.3	107
86	Crystal structure of RhoA–GDP and its functional implications. Nature Structural Biology, 1997, 4, 699-703.	9.7	158
87	Brain acetylhydrolase that inactivates platelet-activating factor is a G-protein-like trimer. Nature, 1997, 385, 89-93.	27.8	180
88	Conversion of Serine-114 to Cysteine-114 and the Role of the Active Site Nucleophile in Acyl Transfer by Myristoyl-ACP Thioesterase fromVibrio harveyiâ€. Biochemistry, 1996, 35, 9967-9973.	2.5	41
89	The Escherichia coli Malonyl-CoA:Acyl Carrier Protein Transacylase at 1.5-Ã Resolution Journal of Biological Chemistry, 1995, 270, 12961-12964.	3.4	165
90	Molecular mechanism of enantiorecognition by esterases. Journal of the American Chemical Society, 1995, 117, 2104-2105.	13.7	29

6

#	Article	IF	CITATIONS
91	The Occurence of C–H · · · O Hydrogen Bonds in Proteins. Journal of Molecular Biology, 1995, 252, 248-262.	4.2	540
92	Structure and Function of Lipases. Advances in Protein Chemistry, 1994, 45, 1-52.	4.4	140
93	Crystallization and preliminary crystallographic studies of the precursor and mature forms of a neutral lipase from the fungusRhizopus delemar. Proteins: Structure, Function and Bioinformatics, 1994, 18, 301-306.	2.6	12
94	Crystallization of Thioesterase II from Escherichia coli. Journal of Molecular Biology, 1994, 236, 660-662.	4.2	4
95	Crystallization of the Malonyl Coenzyme A-Acyl Carrier Protein Transacylase from Escherichia coli. Journal of Molecular Biology, 1994, 242, 99-102.	4.2	15
96	Crystallization of canine cardiac calsequestrin. Journal of Molecular Biology, 1994, 235, 357-360.	4.2	12
97	News from the interface: the molecular structures of triacyglyceride lipases. Trends in Biochemical Sciences, 1993, 18, 20-25.	7.5	197
98	The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 Ã resolution. Journal of Molecular Biology, 1992, 227, 818-839.	4.2	253
99	High resolution crystal structures and comparisons of T-state deoxyhaemoglobin and two liganded T-State haemoglobins: T(α-oxy)haemoglobin and T(met)haemoglobin. Journal of Molecular Biology, 1992, 228, 551-579.	4.2	104
100	Crystallization and preliminary crystallographic data of a Streptomyces scabies extracellular esterase. Journal of Molecular Biology, 1992, 227, 569-571.	4.2	6
101	Expression, purification and crystallization of the Vibrio harveyi acyltransferase. Journal of Molecular Biology, 1992, 227, 572-574.	4.2	8
102	Relationships among serine hydrolases: evidence for a common structural motif in triacylglyceride lipases and esterases. Biochemistry and Cell Biology, 1991, 69, 842-851.	2.0	146
103	A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature, 1990, 343, 767-770.	27.8	1,207
104	Initiating a crystallographic study of trypanothione reductase. Journal of Molecular Biology, 1990, 216, 235-237.	4.2	22
105	Stereochemistry of carbon monoxide binding to normal human adult and Cowtown haemoglobins. Journal of Molecular Biology, 1990, 211, 515-519.	4.2	76
106	High-resolution (1.5 Ã) crystal structure of phospholipase C from Bacillus cereus. Nature, 1989, 338, 357-360.	27.8	484
107	Structure of the liganded T state of haemoglobin identifies the origin of cooperative oxygen binding. Nature, 1988, 331, 725-728.	27.8	95
108	Crystallization of the periplasmic oligopeptide-binding protein of Salmonella typhimurium. Journal of Molecular Biology, 1988, 204, 493-494.	4.2	12

#	Article	IF	CITATIONS
109	Bonding of molecular oxygen to T state human haemoglobin. Nature, 1984, 307, 74-76.	27.8	106