Sunkook Kim

List of Publications by Citations

Source: https://exaly.com/author-pdf/8017609/sunkook-kim-publications-by-citations.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

124 4, papers cit

4,806 citations

25 h-index 67 g-index

144 ext. papers

5,575 ext. citations

8.5 avg, IF

5.39 L-index

#	Paper	IF	Citations
124	High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. <i>Nature Communications</i> , 2012 , 3, 1011	17.4	1223
123	High-detectivity multilayer MoS(2) phototransistors with spectral response from ultraviolet to infrared. <i>Advanced Materials</i> , 2012 , 24, 5832-6	24	814
122	Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation. <i>ACS Nano</i> , 2014 , 8, 6902-10	16.7	323
121	Low-power flexible organic light-emitting diode display device. Advanced Materials, 2011, 23, 3511-6	24	294
120	Two-dimensional layered MoSIbiosensors enable highly sensitive detection of biomolecules. <i>Scientific Reports</i> , 2014 , 4, 7352	4.9	199
119	Improved growth behavior of atomic-layer-deposited high-k dielectrics on multilayer MoS2 by oxygen plasma pretreatment. <i>ACS Applied Materials & Dieserga (Materials & Dieserga)</i> , 5, 4739-44	9.5	137
118	Highly Crystalline CVD-grown Multilayer MoSe2 Thin Film Transistor for Fast Photodetector. <i>Scientific Reports</i> , 2015 , 5, 15313	4.9	108
117	Giant photoamplification in indirect-bandgap multilayer MoS2 phototransistors with local bottom-gate structures. <i>Advanced Materials</i> , 2015 , 27, 2224-30	24	92
116	High-Mobility Transistors Based on Large-Area and Highly Crystalline CVD-Grown MoSe2 Films on Insulating Substrates. <i>Advanced Materials</i> , 2016 , 28, 2316-21	24	87
115	A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe2 films. <i>Nano Research</i> , 2017 , 10, 1861-1871	10	73
114	High-Performance Flexible Multilayer MoS2 Transistors on Solution-Based Polyimide Substrates. <i>Advanced Functional Materials</i> , 2016 , 26, 2426-2434	15.6	63
113	Selective and localized laser annealing effect for high-performance flexible multilayer MoS2 thin-film transistors. <i>Nano Research</i> , 2014 , 7, 1137-1145	10	55
112	A Highly Sensitive Capacitive Touch Sensor Integrated on a Thin-Film-Encapsulated Active-Matrix OLED for Ultrathin Displays. <i>IEEE Transactions on Electron Devices</i> , 2011 , 58, 3609-3615	2.9	54
111	Fully transparent pixel circuits driven by random network carbon nanotube transistor circuitry. <i>ACS Nano</i> , 2010 , 4, 2994-8	16.7	54
110	Fully transparent thin-film transistors based on aligned carbon nanotube arrays and indium tin oxide electrodes. <i>Advanced Materials</i> , 2009 , 21, 564-8	24	53
109	Analysis of flicker noise in two-dimensional multilayer MoS2 transistors. <i>Applied Physics Letters</i> , 2014 , 104, 083110	3.4	49
108	Sensory Adaptation and Neuromorphic Phototransistors Based on CsPb(Brl) Perovskite and MoS Hybrid Structure. <i>ACS Nano</i> , 2020 , 14, 9796-9806	16.7	42

(2018-2018)

107	Wireless Real-Time Temperature Monitoring of Blood Packages: Silver Nanowire-Embedded Flexible Temperature Sensors. <i>ACS Applied Materials & Distributed Materials & Distribut</i>	9.5	42
106	Improving the Stability of High-Performance Multilayer MoS Field-Effect Transistors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 42943-42950	9.5	41
105	Label-Free and Recalibrated Multilayer MoS Biosensor for Point-of-Care Diagnostics. <i>ACS Applied Materials & Diagnostics</i> , 2017 , 9, 43490-43497	9.5	36
104	Electrical characteristics of multilayer MoS2 transistors at real operating temperatures with different ambient conditions. <i>Applied Physics Letters</i> , 2014 , 105, 152105	3.4	34
103	Real-time electrical detection of epidermal skin MoS2 biosensor for point-of-care diagnostics. <i>Nano Research</i> , 2017 , 10, 767-775	10	33
102	Interstitial Mo-Assisted Photovoltaic Effect in Multilayer MoSe Phototransistors. <i>Advanced Materials</i> , 2018 , 30, e1705542	24	28
101	Laser-Processed Nature-Inspired Deformable Structures for Breathable and Reusable Electrophysiological Sensors toward Controllable Home Electronic Appliances and Psychophysiological Stress Monitoring. <i>ACS Applied Materials & Description</i> (2018), 11, 28387-28396	9.5	27
100	Mechanically and optically reliable folding structure with a hyperelastic material for seamless foldable displays. <i>Applied Physics Letters</i> , 2011 , 98, 151904	3.4	26
99	Highly sensitive active pixel image sensor array driven by large-area bilayer MoS transistor circuitry. <i>Nature Communications</i> , 2021 , 12, 3559	17.4	24
98	Exceptionally Uniform and Scalable Multilayer MoS Phototransistor Array Based on Large-Scale MoS Grown by RF Sputtering, Electron Beam Irradiation, and Sulfurization. <i>ACS Applied Materials & Materials amp; Interfaces</i> , 2020 , 12, 20645-20652	9.5	24
97	Enhancement of photoresponsive electrical characteristics of multilayer MoS2 transistors using rubrene patches. <i>Nano Research</i> , 2015 , 8, 790-800	10	21
96	. IEEE Transactions on Industrial Electronics, 2020 , 67, 8808-8816	8.9	21
95	Electrical Contact Analysis of Multilayer MoS2 Transistor With Molybdenum Source/Drain Electrodes. <i>IEEE Electron Device Letters</i> , 2015 , 36, 1215-1218	4.4	20
94	Atomic-layer-deposited ZnO thin-film transistors with various gate dielectrics. <i>Physica Status Solidi</i> (A) Applications and Materials Science, 2012 , 209, 2087-2090	1.6	20
93	Asymmetric Double-Gate EGa2O3 Nanomembrane Field-Effect Transistor for Energy-Efficient Power Devices. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800938	6.4	19
92	Phototransistors: High-Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared (Adv. Mater. 43/2012). <i>Advanced Materials</i> , 2012 , 24, 5902-5902	24	19
91	MoS Field-Effect Transistor-Amyloid-IHybrid Device for Signal Amplified Detection of MMP-9. <i>Analytical Chemistry</i> , 2019 , 91, 8252-8258	7.8	18
90	Chemical Doping Effects on CVD-Grown Multilayer MoSe2 Transistor. <i>Advanced Electronic Materials</i> , 2018 , 4, 1700639	6.4	18

89	Evaluation of pulsed laser annealing for flexible multilayer MoS2 transistors. <i>Applied Physics Letters</i> , 2015 , 106, 113111	3.4	18
88	18.4: A New Seamless Foldable OLED Display Composed of Multi Display Panels. <i>Digest of Technical Papers SID International Symposium</i> , 2010 , 41, 257	0.5	18
87	n-Type Doping Effect of CVD-Grown Multilayer MoSe2 Thin Film Transistors by Two-Step Functionalization. <i>Advanced Electronic Materials</i> , 2018 , 4, 1800308	6.4	18
86	Capacitance-voltage modeling of metal-ferroelectric-semiconductor capacitors based on epitaxial oxide heterostructures. <i>Applied Physics Letters</i> , 2011 , 98, 102901	3.4	17
85	Recent progress in high-mobility thin-film transistors based on multilayer 2D materials. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 164001	3	16
84	Flexible PI-Based Plant Drought Stress Sensor for Real-Time Monitoring System in Smart Farm. <i>Electronics (Switzerland)</i> , 2018 , 7, 114	2.6	16
83	Optically transparent thin-film transistors based on 2D multilayer MoSIand indium zinc oxide electrodes. <i>Nanotechnology</i> , 2015 , 26, 035202	3.4	16
82	Chemical Doping Effects in Multilayer MoS and Its Application in Complementary Inverter. <i>ACS Applied Materials & Doping Effects</i> , 2018, 10, 23270-23276	9.5	15
81	A Colorimetric Multifunctional Sensing Method for Structural-Durability-Health Monitoring Systems. <i>Advanced Materials</i> , 2019 , 31, e1807552	24	14
80	Temperature-Dependent Electrical Properties of Al2O3-Passivated Multilayer MoS2 Thin-Film Transistors. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 424	2.6	14
79	On MoS Thin-Film Transistor Design Consideration for a NO Gas Sensor. <i>ACS Sensors</i> , 2019 , 4, 2930-2930	69.2	14
78	A \$alpha \$ -Si:H Thin-Film Phototransistor for a Near-Infrared Touch Sensor. <i>IEEE Electron Device Letters</i> , 2015 , 36, 41-43	4.4	14
77	Peimine Inhibits the Production of Proinflammatory Cytokines Through Regulation of the Phosphorylation of NF- B and MAPKs in HMC-1 Cells. <i>Pharmacognosy Magazine</i> , 2017 , 13, S359-S364	0.8	14
76	Large-area MoS2-MoOx heterojunction thin-film photodetectors with wide spectral range and enhanced photoresponse. <i>APL Materials</i> , 2019 , 7, 061101	5.7	13
75	Highly Efficient Nanocarbon Coating Layer on the Nanostructured Copper Sulfide-Metal Organic Framework Derived Carbon for Advanced Sodium-Ion Battery Anode. <i>Materials</i> , 2019 , 12,	3.5	13
74	Highly Linear and Stable Flexible Temperature Sensors Based on Laser-Induced Carbonization of Polyimide Substrates for Personal Mobile Monitoring. <i>Advanced Materials Technologies</i> , 2020 , 5, 20000	14.8	13
73	Alcohol-based highly conductive polymer for conformal nanocoatings on hydrophobic surfaces toward a highly sensitive and stable pressure sensor. <i>NPG Asia Materials</i> , 2020 , 12,	10.3	13
72	Enhanced Moisture-Reactive Hydrophilic-PTFE-Based Flexible Humidity Sensor for Real-Time Monitoring. <i>Sensors</i> , 2018 , 18,	3.8	13

(2020-2017)

71	Enhanced photoresponsivity of multilayer MoS2 transistors using high work function MoOx overlayer. <i>Applied Physics Letters</i> , 2017 , 110, 053112	3.4	11
70	Flexible nano-hybrid inverter based on inkjet-printed organic and 2D multilayer MoS2 thin film transistor. <i>Organic Electronics</i> , 2014 , 15, 3038-3042	3.5	11
69	High performance and transparent multilayer MoS2 transistors: Tuning Schottky barrier characteristics. <i>AIP Advances</i> , 2016 , 6, 055026	1.5	11
68	Highly stretchable metal-polymer hybrid conductors for wearable and self-cleaning sensors. <i>NPG Asia Materials</i> , 2021 , 13,	10.3	11
67	Biocompatible, Transparent, and High-Areal-Coverage Kirigami PEDOT:PSS Electrodes for Electrooculography-Derived Human-Machine Interactions. <i>ACS Sensors</i> , 2021 , 6, 967-975	9.2	11
66	Highly Stable Thin-Film Transistors Based on Indium Oxynitride Semiconductor. <i>ACS Applied Materials & District Ma</i>	9.5	10
65	Rendering High Charge Density of States in Ionic Liquid-Gated MoS2 Transistors. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 18278-18282	3.8	10
64	Ultrasensitive Multilayer MoS2-Based Photodetector with Permanently Grounded Gate Effect. <i>Advanced Electronic Materials</i> , 2020 , 6, 1901256	6.4	9
63	Neuromorphic Active Pixel Image Sensor Array for Visual Memory. ACS Nano, 2021, 15, 15362-15370	16.7	9
62	The doping mechanism and electrical performance of polyethylenimine-doped MoSII2 transistor. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2017 , 14, 1600262		9
61	Improvement of the stability and optoelectronic characteristics of molybdenum disulfide thin-film transistors by applying a nitrocellulose passivation layer. <i>Journal of Information Display</i> , 2020 , 21, 123-1	30 ¹	8
60	Nanowire-based ternary transistor by threshold-voltage manipulation. <i>Applied Physics Letters</i> , 2014 , 104, 143509	3.4	8
59	Facile fabrication of forest-like ZnO hierarchical structures on conductive fabric substrate. <i>Physica Status Solidi - Rapid Research Letters</i> , 2012 , 6, 355-357	2.5	8
58	DC modeling and the source of flicker noise in passivated carbon nanotube transistors. <i>Nanotechnology</i> , 2010 , 21, 385203	3.4	8
57	Active-matrix monolithic gas sensor array based on MoS2 thin-film transistors. <i>Communications Materials</i> , 2020 , 1,	6	8
56	Direct growth of orthorhombic Hf0.5Zr0.5O2 thin films for hysteresis-free MoS2 negative capacitance field-effect transistors. <i>Npj 2D Materials and Applications</i> , 2021 , 5,	8.8	8
55	Low-temperature behaviors of multilayer MoS2 transistors with ohmic and Schottky contacts. <i>Applied Physics Letters</i> , 2019 , 115, 033501	3.4	7
54	Trends in Low-Temperature Combustion Derived Thin Films for Solution-Processed Electronics. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000464	6.4	7

53	A Fully Integrated Flexible Heterogeneous Temperature and Humidity Sensor-Based Occupancy Detection Device for Smart Office Applications. <i>Advanced Materials Technologies</i> , 2019 , 4, 1900619	6.8	6
52	A highly sensitive ultrathin-film iron corrosion sensor encapsulated by an anion exchange membrane embedded in mortar. <i>Construction and Building Materials</i> , 2017 , 156, 506-514	6.7	6
51	Nanonet: Low-temperature-processed tellurium nanowire network for scalable p-type field-effect transistors and a highly sensitive phototransistor array. <i>NPG Asia Materials</i> , 2021 , 13,	10.3	6
50	Ultrafast prototyping of large-area stretchable electronic systems by laser ablation technique for controllable robotic arm operations. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 1-1	8.9	6
49	Highly enhanced ferroelectricity in HfO-based ferroelectric thin film by light ion bombardment <i>Science</i> , 2022 , 376, 731-738	33.3	6
48	Photosensitivity enhancement in hydrogenated amorphous silicon thin-film phototransistors with gate underlap. <i>Applied Physics Letters</i> , 2015 , 107, 201103	3.4	5
47	Diffuse light-scattering properties of nanocracked and porous MoO3 films self-formed by electrodeposition and thermal annealing. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2012 , 209, 2161-2166	1.6	5
46	Drop-cast and dye-sensitized ZnO nanorod-based visible-light photodetectors. <i>Physica Status Solidi - Rapid Research Letters</i> , 2013 , 7, 659-663	2.5	5
45	High-Intensity Ultrasound-Assisted Low-Temperature Formulation of Lanthanum Zirconium Oxide Nanodispersion for Thin-Film Transistors. <i>ACS Applied Materials & Damp; Interfaces</i> , 2020 , 12, 44926-4493	3 ^{9.5}	5
44	Smart Patch for Skin Temperature: Preliminary Study to Evaluate Psychometrics and Feasibility. <i>Sensors</i> , 2021 , 21,	3.8	5
43	Multifunctional molybdenum disulfide flash memory using a PEDOT:PSS floating gate. <i>NPG Asia Materials</i> , 2021 , 13,	10.3	5
42	High-Performance Non-Volatile InGaZnO Based Flash Memory Device Embedded with a Monolayer Au Nanoparticles. <i>Nanomaterials</i> , 2021 , 11,	5.4	5
41	Research Update: Nanoscale surface potential analysis of MoS2 field-effect transistors for biomolecular detection using Kelvin probe force microscopy. <i>APL Materials</i> , 2016 , 4, 100701	5.7	5
40	Resistive Water Sensors Based on PEDOT:PSSPEGME Copolymer and Laser Treatment for Water Ingress Monitoring Systems. <i>ACS Sensors</i> , 2019 , 4, 3291-3297	9.2	5
39	Pulsed Gate Switching of MoS2 Field-Effect Transistor Based on Flexible Polyimide Substrate for Ultrasonic Detectors. <i>Advanced Functional Materials</i> , 2021 , 31, 2007389	15.6	5
38	Sub-Thermionic Negative Capacitance Field Effect Transistors with Solution Combustion-Derived Hf0.5Zr0.5O2. <i>Advanced Functional Materials</i> , 2021 , 31, 2103748	15.6	5
37	Chaotic Organic Crystal Phosphorescent Patterns for Physical Unclonable Functions. <i>Advanced Materials</i> , 2021 , 33, e2102542	24	5
36	Massive, eco-friendly, and facile fabrication of multi-functional anodic aluminum oxides: application to nanoporous templates and sensing platforms. <i>RSC Advances</i> , 2017 , 7, 4518-4530	3.7	4

(2019-2020)

35	Rapid and mass-producible synthesis of high-crystallinity MoSe nanosheets by ampoule-loaded chemical vapor deposition. <i>Nanoscale</i> , 2020 , 12, 6991-6999	7.7	4	
34	High-temperature electrical behavior of a 2D multilayered MoS2 transistor. <i>Journal of the Korean Physical Society</i> , 2014 , 64, 945-948	0.6	4	
33	Multilayer transition-metal dichalcogenide channel Thin-Film Transistors 2012,		4	
32	Ultra-Short Pulsed Laser Annealing Effects on MoS2 Transistors with Asymmetric and Symmetric Contacts. <i>Electronics (Switzerland)</i> , 2019 , 8, 222	2.6	3	
31	Phototransistors: Giant Photoamplification in Indirect-Bandgap Multilayer MoS2 Phototransistors with Local Bottom-Gate Structures (Adv. Mater. 13/2015). <i>Advanced Materials</i> , 2015 , 27, 2126-2126	24	3	
30	Transition Metal Dichalcogenide Photodetectors 2018 ,		3	
29	Skin-conformable photoplethysmogram sensors for energy-efficient always-on cardiovascular monitoring systems. <i>Nano Energy</i> , 2022 , 92, 106773	17.1	3	
28	Effectively Enhanced Broadband Phototransistors Based on Multilayer WSe2/Pentacene. <i>Advanced Electronic Materials</i> , 2021 , 7, 2100003	6.4	3	
27	A New Microstructure Development Model for the Evaluation of Concrete Setting Time. <i>Advances in Materials Science and Engineering</i> , 2016 , 2016, 1-10	1.5	3	
26	Transistors: High-Mobility Transistors Based on Large-Area and Highly Crystalline CVD-Grown MoSe2 Films on Insulating Substrates (Adv. Mater. 12/2016). <i>Advanced Materials</i> , 2016 , 28, 2278-2278	24	3	
25	High photoresponsivity of multilayer MoSe2 phototransistors decorated with Au nanoseeds. <i>Applied Physics Letters</i> , 2021 , 119, 131102	3.4	3	
24	All-day wearable health monitoring system. <i>EcoMat</i> ,	9.4	3	
23	Colorimetric Sensing Systems: A Colorimetric Multifunctional Sensing Method for Structural-Durability-Health Monitoring Systems (Adv. Mater. 23/2019). <i>Advanced Materials</i> , 2019 , 31, 1970163	24	2	
22	Doubly clamped single-walled carbon nanotube resonators operating in MHz frequencies		2	
21	Mechanically Stable Kirigami Deformable Resonant Circuits for Wireless Vibration and Pressure Sensor Applications. <i>ACS Applied Materials & Description of Materials & Materia</i>	9.5	2	
20	Nickel telluride vertically aligned thin film by radio-frequency magnetron sputtering for hydrogen evolution reaction. <i>APL Materials</i> , 2020 , 8, 121104	5.7	2	
19	Growth of Multiorientated Polycrystalline MoS Using Plasma-Enhanced Chemical Vapor Deposition for Efficient Hydrogen Evolution Reactions. <i>Nanomaterials</i> , 2020 , 10,	5.4	2	
18	Moving shot, an affordable and high-throughput setup for direct imaging of fast-moving microdroplets. <i>Microsystem Technologies</i> , 2019 , 25, 3417-3423	1.7	2	

17	Customization of MoS2 Phototransistors via Thiol-Based Functionalization. <i>Advanced Electronic Materials</i> , 2021 , 7, 2100644	6.4	2
16	66-1: Invited Paper: High Mobility Flexible 2D Multilayer MoS2 TFTs on Solution-Based Polyimide Substrates. <i>Digest of Technical Papers SID International Symposium</i> , 2017 , 48, 965-967	0.5	1
15	Plasma diagnostic in LiMn2O4 thin film process for Li-ion battery application. <i>Surface and Coatings Technology</i> , 2020 , 397, 126066	4.4	1
14	High-Speed Direct Writing of MoSe2 by Maskless and Gas-Free Laser-Assisted Selenization Process. Journal of Physical Chemistry C, 2020 , 124, 19333-19339	3.8	1
13	High-mobility 2D layered semiconducting transistors based on large-area and highly crystalline CVD-grown MoSe2 for flexible electronics 2016 ,		1
12	Flexible Platform Oriented: Unipolar-Type Hybrid Dual-Channel Scalable Field-Effect Phototransistors Array Based on Tellurium Nanowires and Tellurium-Film with Highly Linear Photoresponsivity. <i>Advanced Electronic Materials</i> ,2101331	6.4	1
11	Laser-Processed Stretchable-Gradient Interconnection-Based Temperature Sensor for a Real-Time Monitoring System. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 5601-5607	4	1
10	Fabrication of Highly Photosensitive MoS 2 Photodetector Films Using Rapid Electrohydrodynamic-Jet Printing Process. <i>Advanced Electronic Materials</i> ,2101063	6.4	O
9	Sub-Zero Temperature Sensor Based on Laser-Written Carbon. Advanced Electronic Materials,2101252	6.4	0
8	Low-Temperature Carrier Transport Mechanism of Wafer-Scale Grown Polycrystalline Molybdenum Disulfide Thin-Film Transistor Based on Radio Frequency Sputtering and Sulfurization. <i>Advanced Materials Interfaces</i> ,2102360	4.6	Ο
7	Expeditiously Crystallized Pure Orthorhombic-HfZrO for Negative Capacitance Field Effect Transistors ACS Applied Materials & Interfaces, 2021, 13, 60250-60260	9.5	0
6	Thin-Film Transistors: Chemical Doping Effects on CVD-Grown Multilayer MoSe2 Transistor (Adv. Electron. Mater. 6/2018). <i>Advanced Electronic Materials</i> , 2018 , 4, 1870032	6.4	
5	Electrical performance of local bottom-gated MoS2 thin-film transistors. <i>Journal of Information Display</i> , 2014 , 15, 107-110	4.1	
4	Thin-Film Transistors Based on Transition Metal Dichalcogenides539-562		
3	Embedded Structural-Durability-Health Monitoring System Integrated with Multi-Sensors and a Wideband Antenna. <i>IEEE Internet of Things Journal</i> , 2022 , 1-1	10.7	
2	Ultrathin Al-Assisted Al 2 O 3 Passivation Layer for High-Stability Tungsten Diselenide Transistors and Their Ambipolar Inverter. <i>Advanced Electronic Materials</i> ,2101012	6.4	
1	Resistive Water Level Sensors Based on AgNWs/PEDOT:PSSPEGME Hybrid Film for Agricultural Monitoring Systems <i>ACS Omega</i> , 2022 , 7, 15459-15466	3.9	