Wojciech Giernacki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8017581/publications.pdf

Version: 2024-02-01

1039406 1058022 49 411 9 14 citations g-index h-index papers 51 51 51 313 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Sea-Surface Target Visual Tracking with a Multi-Camera Cooperation Approach. Sensors, 2022, 22, 693.	2.1	5
2	Position Control of Quadrotor UAV Based on Cascade Fuzzy Neural Network. Energies, 2022, 15, 1763.	1.6	20
3	An Acoustic Fault Detection and Isolation System for Multirotor UAV. Energies, 2022, 15, 3955.	1.6	16
4	Hybrid Quasi-Optimal PID-SDRE Quadrotor Control. Energies, 2022, 15, 4312.	1.6	4
5	Coupled PID-SDRE Controller of a Quadrotor: Positioning and Stabilization of UAV Flight., 2022,,.		O
6	Particle swarm optimisation in nonlinear model predictive control; comprehensive simulation study for two selected problems. International Journal of Control, 2021, 94, 2623-2639.	1.2	6
7	Altitude Measurement-Based Optimization of the Landing Process of UAVs. Sensors, 2021, 21, 1151.	2.1	4
8	Mathematical Modeling of the Coaxial Quadrotor Dynamics for Its Attitude and Altitude Control. Energies, 2021, 14, 1232.	1.6	12
9	Optimal Tuning of the Lateral-Dynamics Parameters for Aerial Vehicles With Bounded Lateral Force. IEEE Robotics and Automation Letters, 2021, 6, 3949-3955.	3.3	9
10	AL-TUNE: A Family of Methods to Effectively Tune UAV Controllers in In-flight Conditions. Journal of Intelligent and Robotic Systems: Theory and Applications, 2021, 103, 1.	2.0	7
11	Trajectory Tracking with Adaptive Robust Control for Quadrotor. Applied Sciences (Switzerland), 2021, 11, 8571.	1.3	7
12	MultiPDF particle filtering in state estimation of nonlinear objects. Nonlinear Dynamics, 2021, 106, 2165-2182.	2.7	5
13	Dynamic antiâ€windup compensator for fractionalâ€order system with timeâ€delay. Asian Journal of Control, 2020, 22, 1767-1781.	1.9	3
14	A New Network for Particle Filtering of Multivariable Nonlinear Objects â€. Energies, 2020, 13, 1355.	1.6	1
15	In-flight Efficient Controller Auto-tuning using a Pair of UAVs. , 2020, , .		2
16	Optimal Tuning of Altitude Controller Parameters of Unmanned Aerial Vehicle Using Iterative Learning Approach. Advances in Intelligent Systems and Computing, 2020, , 398-407.	0.5	2
17	Active Disturbance Rejection Control of High-Order Flat Underactuated Systems: Mass-Spring Benchmark Problem. Advances in Intelligent Systems and Computing, 2020, , 1336-1347.	0.5	1
18	A Study on Coaxial Quadrotor Model Parameter Estimation: an Application of the Improved Square Root Unscented Kalman Filter. Journal of Intelligent and Robotic Systems: Theory and Applications, 2019, 95, 491-510.	2.0	7

#	Article	IF	Citations
19	Real-Time Model-Free Minimum-Seeking Autotuning Method for Unmanned Aerial Vehicle Controllers Based on Fibonacci-Search Algorithm. Sensors, 2019, 19, 312.	2.1	16
20	Iterative Learning Method for In-Flight Auto-Tuning of UAV Controllers Based on Basic Sensory Information. Applied Sciences (Switzerland), 2019, 9, 648.	1.3	15
21	A Nonlinear Filter for Efficient Attitude Estimation of Unmanned Aerial Vehicle (UAV). Journal of Intelligent and Robotic Systems: Theory and Applications, 2019, 95, 1079-1095.	2.0	17
22	Real-time Implementation and Flight Tests using Linear and Nonlinear Controllers for a Fixed-wing Miniature Aerial Vehicle (MAV). International Journal of Control, Automation and Systems, 2018, 16, 392-396.	1.6	11
23	Cuttlefish Optimization Algorithm in Autotuning of Altitude Controller of Unmanned Aerial Vehicle (UAV). Advances in Intelligent Systems and Computing, 2018, , 841-852.	0.5	7
24	PV System Design and Flight Efficiency Considerations for Fixed-Wing Radio-Controlled Aircraft—A Case Study. Energies, 2018, 11, 2648.	1.6	9
25	Evolutionary Based Tuning Approach of <tex> PI^{lambda} mathrm D^{mu} where $\text{Evolutional-Order Speed Controller for multirotor UAV.}$		1
26	Fractional-Order PI Controller withÂAnti-windup Compensation forÂFirst Order Delay System. Advances in Intelligent Systems and Computing, 2018, , 26-35.	0.5	1
27	Crazyflie 2.0 quadrotor as a platform for research and education in robotics and control engineering. , 2017, , .		105
28	Rotational speed control of multirotor UAV's propulsion unit based on fractional-order PI controller. , 2017, , .		1
29	Influence of time delay on fractional-order PI-controlled system for a second-order oscillatory plant model with time delay. Archives of Electrical Engineering, 2017, 66, 693-704.	1.0	4
30	Tracking performance of angular velocity in a servo system with fractional-order PI controller and anti-windup compensation. , $2017, \ldots$		1
31	Stability region of a simplified multirotor motor–rotor model with time delay and fractional-order PD controller. Automatika, 2017, 58, 384-390.	1.2	4
32	Robust CDM and pole placement PID based thrust controllers for multirotor motor-rotor simplified model: The comparison in a context of using anti-windup compensation. , 2016, , .		5
33	Near to optimal design of PlλDν fractional-order speed controller (FOPID) for multirotor motor-rotor simplified model. , 2016, , .		3
34	Thrust estimation by fuzzy modeling of coaxial propulsion unit for multirotor UAVs., 2016,,.		9
35	Stability analysis and tracking performance of fractional-order PI controller for a second-order oscillatory system with time-delay. , 2016, , .		8
36	Mathematical models database (MMD ver. 1.0) non-commercial proposal for researchers. , 2016, , .		5

#	Article	IF	CITATIONS
37	Robust estimation algorithm of altitude and vertical velocity for multirotor UAVs., 2016,,.		4
38	Performance of Coaxial Propulsion in Design of Multi-rotor UAVs. Advances in Intelligent Systems and Computing, 2016, , 523-531.	0.5	25
39			