Maik Böhmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/801734/publications.pdf

Version: 2024-02-01

22 papers 2,279 citations

15 h-index 22 g-index

24 all docs

24 docs citations

times ranked

24

3672 citing authors

#	Article	IF	Citations
1	Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO ₂ , and Ca ²⁺ Signaling. Annual Review of Plant Biology, 2010, 61, 561-591.	8.6	1,165
2	Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nature Cell Biology, 2010, 12, 87-93.	4.6	364
3	Chemical Genetics Reveals Negative Regulation of Abscisic Acid Signaling by a Plant Immune Response Pathway. Current Biology, 2011, 21, 990-997.	1.8	152
4	Guarding the Green: Pathways to Stomatal Immunity. Molecular Plant-Microbe Interactions, 2013, 26, 626-632.	1.4	103
5	Quantitative transcriptomic analysis of abscisic acidâ€induced and reactive oxygen speciesâ€dependent expression changes and proteomic profiling in Arabidopsis suspension cells. Plant Journal, 2011, 67, 105-118.	2.8	83
6	Distinct Cellular Locations of Carbonic Anhydrases Mediate Carbon Dioxide Control of Stomatal Movements. Plant Physiology, 2015, 169, 1168-1178.	2.3	78
7	Proteomic analysis of dimorphic transition in the phytopathogenic fungusUstilago maydis. Proteomics, 2007, 7, 675-685.	1.3	54
8	Screening for in planta protein-protein interactions combining bimolecular fluorescence complementation with flow cytometry. Plant Methods, 2012, 8, 25.	1.9	50
9	Cdc42 and the Ste20-like kinase Don3 act independently in triggering cytokinesis in Ustilago maydis. Journal of Cell Science, 2008, 121, 143-148.	1.2	42
10	A chemical-genetic approach to elucidate protein kinase function inÂplanta. Plant Molecular Biology, 2007, 65, 817-827.	2.0	31
11	Editorial: Abiotic Stress Signaling in Plants: Functional Genomic Intervention. Frontiers in Plant Science, 2016, 7, 681.	1.7	25
12	Microgravity research in plants. EMBO Reports, 2019, 20, e48541.	2.0	22
13	Dynamic subnuclear relocalisation of WRKY40 in response to Abscisic acid in Arabidopsis thaliana. Scientific Reports, 2015, 5, 13369.	1.6	21
14	WRKY43 regulates polyunsaturated fatty acid content and seed germination under unfavourable growth conditions. Scientific Reports, 2017, 7, 14235.	1.6	21
15	Gravitational Biology I. SpringerBriefs in Space Life Sciences, 2018, , .	0.1	20
16	Dynamic subnuclear relocalization of WRKY40, a potential new mechanism of ABA-dependent transcription factor regulation. Plant Signaling and Behavior, 2015, 10, e1106659.	1.2	16
17	Structural and Functional Heat Stress Responses of Chloroplasts of Arabidopsis thaliana. Genes, 2020, 11, 650.	1.0	14
18	ARADISH - Development of a Standardized Plant Growth Chamber for Experiments in Gravitational Biology Using Ground Based Facilities. Microgravity Science and Technology, 2016, 28, 297-305.	0.7	5

#	Article	IF	CITATIONS
19	ARABIDOMICSâ€"A new experimental platform for molecular analyses of plants in drop towers, on parabolic flights, and sounding rockets. Review of Scientific Instruments, 2020, 91, 034504.	0.6	5
20	Chemical Genetic Analysis of Protein Kinase Function in Plants. Methods in Molecular Biology, 2011, 779, 259-271.	0.4	2
21	Retrograde Analysis of Calcium Signaling by CaMPARI2 Shows Cytosolic Calcium in Chondrocytes Is Unaffected by Parabolic Flights. Biomedicines, 2022, 10, 138.	1.4	2
22	Investigation of Plant Abiotic Stress Tolerance by Proteomics and Phosphoproteomics., 2015, , 75-92.		0