Arianna Calcinotto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8017212/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellular Senescence: Aging, Cancer, and Injury. Physiological Reviews, 2019, 99, 1047-1078.	28.8	641
2	Modulation of Microenvironment Acidity Reverses Anergy in Human and Murine Tumor-Infiltrating T Lymphocytes. Cancer Research, 2012, 72, 2746-2756.	0.9	470
3	IL-23 secreted by myeloid cells drives castration-resistant prostate cancer. Nature, 2018, 559, 363-369.	27.8	258
4	Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression. Nature Communications, 2018, 9, 4832.	12.8	144
5	Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis. Science, 2021, 374, 216-224.	12.6	135
6	IAP antagonists induce anti-tumor immunity in multiple myeloma. Nature Medicine, 2016, 22, 1411-1420.	30.7	133
7	Ways to Enhance Lymphocyte Trafficking into Tumors and Fitness of Tumor Infiltrating Lymphocytes. Frontiers in Oncology, 2013, 3, 231.	2.8	132
8	Re-education of Tumor-Associated Macrophages by CXCR2 Blockade Drives Senescence and Tumor Inhibition in Advanced Prostate Cancer. Cell Reports, 2019, 28, 2156-2168.e5.	6.4	129
9	Targeting TNF-α to Neoangiogenic Vessels Enhances Lymphocyte Infiltration in Tumors and Increases the Therapeutic Potential of Immunotherapy. Journal of Immunology, 2012, 188, 2687-2694.	0.8	128
10	The acidity of the tumor microenvironment is a mechanism of immune escape that can be overcome by proton pump inhibitors. Oncolmmunology, 2013, 2, e22058.	4.6	121
11	Tenascin-C Protects Cancer Stem–like Cells from Immune Surveillance by Arresting T-cell Activation. Cancer Research, 2015, 75, 2095-2108.	0.9	112
12	Bimodal CD40/Fas-Dependent Crosstalk between iNKT Cells and Tumor-Associated Macrophages Impairs Prostate Cancer Progression. Cell Reports, 2018, 22, 3006-3020.	6.4	62
13	iNKT Cells Control Mouse Spontaneous Carcinoma Independently of Tumor-Specific Cytotoxic T Cells. PLoS ONE, 2010, 5, e8646.	2.5	61
14	Genetic and phenotypic attributes of splenic marginal zone lymphoma. Blood, 2022, 139, 732-747.	1.4	49
15	Prostate cancer stem cells are targets of both innate and adaptive immunity and elicit tumor-specific immune responses. Oncolmmunology, 2013, 2, e24520.	4.6	38
16	Modifications of the mouse bone marrow microenvironment favor angiogenesis and correlate with disease progression from asymptomatic to symptomatic multiple myeloma. Oncolmmunology, 2015, 4, e1008850.	4.6	27
17	Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression. Nature Communications, 2021, 12, 7033.	12.8	27
18	Chromogranin A Is Preferentially Cleaved into Proangiogenic Peptides in the Bone Marrow of Multiple Myeloma Patients. Cancer Research, 2016, 76, 1781-1791.	0.9	24

#	Article	IF	CITATIONS
19	Won't you come on in? How to favor lymphocyte infiltration in tumors. Oncolmmunology, 2012, 1, 986-988.	4.6	21
20	Booster Vaccinations against Cancer Are Critical in Prophylactic but Detrimental in Therapeutic Settings. Cancer Research, 2013, 73, 3545-3554.	0.9	17
21	Aging tumour cells to cure cancer: "pro-senescence" therapy for cancer. Swiss Medical Weekly, 2017, 147, w14367.	1.6	16
22	CD4+ T cells sustain aggressive chronic lymphocytic leukemia in Eμ-TCL1 mice through a CD40L-independent mechanism. Blood Advances, 2021, 5, 2817-2828.	5.2	13
23	Boosting anticancer vaccines. Oncolmmunology, 2013, 2, e25032.	4.6	6
24	Role of myeloid-derived suppressor cells in hormone-dependent cancers. Swiss Medical Weekly, 2021, 151, w20483.	1.6	1