
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8017131/publications.pdf Version: 2024-02-01

ΙΟΗΝ Ν ΟΠΙΝΤΟΝ

#	Article	IF	CITATIONS
1	Keeping Up with Phosphorus Dynamics: Overdue Conceptual Changes in Vegetative Filter Strip Research and Management. Frontiers in Environmental Science, 2022, 10, .	1.5	6
2	Tillage exacerbates the vulnerability of cereal crops to drought. Nature Food, 2022, 3, 472-479.	6.2	6
3	Do root hairs of barley and maize roots reinforce soil under shear stress?. Geoderma, 2021, 383, 114740.	2.3	13
4	Particulate macronutrient exports from tropical African montane catchments point to the impoverishment of agricultural soils. Soil, 2021, 7, 53-70.	2.2	3
5	A framework for testing large-scale distributed soil erosion and sediment delivery models: Dealing with uncertainty in models and the observational data. Environmental Modelling and Software, 2021, 137, 104961.	1.9	16
6	Long term simulations of macronutrients (C, N and P) in UK freshwaters. Science of the Total Environment, 2021, 776, 145813.	3.9	14
7	The ecosystem services of urban soils: A review. Geoderma, 2021, 395, 115076.	2.3	62
8	How the composition of sandstone matrices affects rates of soil formation. Geoderma, 2021, 401, 115337.	2.3	3
9	Reproducibility, open science and progression in soil erosion research. A reply to "Response to †National-scale geodata describe widespread accelerated soil erosion' Benaud et al. (2020) Geoderma 271, 114378―by Evans and Boardman (2021). Geoderma, 2021, 402, 115181.	2.3	1
10	The effects of sealing on urban soil carbon and nutrients. Soil, 2021, 7, 661-675.	2.2	11
11	A mesocosmâ€based assessment of whether root hairs affect soil erosion by simulated rainfall. European Journal of Soil Science, 2021, 72, 2372-2380.	1.8	14
12	Tropical Montane Forest Conversion Is a Critical Driver for Sediment Supply in East African Catchments. Water Resources Research, 2020, 56, e2020WR027495.	1.7	11
13	Agricultural land is the main source of stream sediments after conversion of an African montane forest. Scientific Reports, 2020, 10, 14827.	1.6	21
14	Tracing the origin of reservoir sediments using magnetic properties in Southeastern Brazil. Semina:Ciencias Agrarias, 2020, 41, 847.	0.1	6
15	National-scale geodata describe widespread accelerated soil erosion. Geoderma, 2020, 371, 114378.	2.3	39
16	High-resolution monitoring of diffuse (sheet or interrill) erosion using structure-from-motion. Geoderma, 2020, 375, 114477.	2.3	30
17	Sediment source and volume of soil erosion in a gully system using UAV photogrammetry. Revista Brasileira De Ciencia Do Solo, 2020, 44, .	0.5	8
18	Monitoring land use impacts on sediment production: a case study of the pilot catchment from the Brazilian program of payment for environmental services. Revista Brasileira De Ciencia Do Solo, 2020, 44, .	0.5	3

#	Article	IF	CITATIONS
19	Using pedological knowledge to improve sediment source apportionment in tropical environments. Journal of Soils and Sediments, 2019, 19, 3274-3289.	1.5	25
20	On the evaluation of soil erosion models: Are we doing enough?. Earth-Science Reviews, 2019, 197, 102898.	4.0	133
21	Arable soil formation and erosion: a hillslope-based cosmogenic nuclide study in the United Kingdom. Soil, 2019, 5, 253-263.	2.2	22
22	High precision tracing of soil and sediment movement using fluorescent tracers at hillslope scale. Earth Surface Processes and Landforms, 2019, 44, 1091-1099.	1.2	5
23	Uncertainties in assessing tillage erosion – How appropriate are our measuring techniques?. Geomorphology, 2018, 304, 214-225.	1.1	29
24	Impact of two centuries of intensive agriculture on soil carbon, nitrogen and phosphorus cycling in the UK. Science of the Total Environment, 2018, 634, 1486-1504.	3.9	54
25	An investigation of the distribution of phosphorus between free and mineral associated soil organic matter, using density fractionation. Plant and Soil, 2018, 427, 139-148.	1.8	20
26	Relationship Among Crop Systems, Soil Cover, and Water Erosion on a Typic Hapludox. Revista Brasileira De Ciencia Do Solo, 2018, 42, .	0.5	7
27	Developing global pedotransfer functions to estimate available soil phosphorus. Science of the Total Environment, 2018, 644, 1110-1116.	3.9	20
28	Using real time particle tracking to understand soil particle movements during rainfall events. Catena, 2017, 150, 32-38.	2.2	23
29	Modelling spatially distributed soil losses and sediment yield in the upper Grande River Basin - Brazil. Catena, 2017, 157, 139-150.	2.2	50
30	Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research. Water Resources Research, 2017, 53, 5209-5219.	1.7	269
31	Testing the utility of structureâ€fromâ€motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion. Earth Surface Processes and Landforms, 2017, 42, 1860-1871.	1.2	73
32	The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil, 2016, 2, 111-128.	2.2	1,077
33	Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecology Letters, 2016, 19, 1140-1149.	3.0	211
34	A novel fluorescent tracer for real-time tracing of clay transport over soil surfaces. Catena, 2016, 141, 39-45.	2.2	13
35	Can industrial byâ€products enhance phosphorus retention within vegetated buffer strips?. European Journal of Soil Science, 2015, 66, 42-52.	1.8	5
36	Costs and benefits of erosion control measures in the <scp>UK</scp> . Soil Use and Management, 2015, 31, 16-33.	2.6	62

#	Article	IF	CITATIONS
37	Can we manipulate root system architecture to control soil erosion?. Soil, 2015, 1, 603-612.	2.2	83
38	The interdisciplinary nature of <i>SOIL</i> . Soil, 2015, 1, 117-129.	2.2	494
39	Potential use of rare earth oxides as tracers of organic matter in grassland. Journal of Plant Nutrition and Soil Science, 2015, 178, 288-296.	1.1	9
40	Long-term effects of drinking-water treatment residuals on dissolved phosphorus export from vegetated buffer strips. Environmental Science and Pollution Research, 2015, 22, 6068-6076.	2.7	14
41	Aged riverine particulate organic carbon in four UK catchments. Science of the Total Environment, 2015, 536, 648-654.	3.9	15
42	Comment on "Rainfall erosivity in Europe―by Panagos et al. (Sci. Total Environ., 511, 801–814, 2015). Science of the Total Environment, 2015, 532, 849-852.	3.9	15
43	Soil loss by water erosion in areas under maize and jack beans intercropped and monocultures. Ciencia E Agrotecnologia, 2014, 38, 129-139.	1.5	13
44	Ultraâ€rapid topographic surveying for complex environments: the handâ€held mobile laser scanner (HMLS). Earth Surface Processes and Landforms, 2014, 39, 138-142.	1.2	55
45	Measurement of flood peak effects as a result of soil and land management, with focus on experimental issues and scale. Journal of Environmental Management, 2014, 132, 304-312.	3.8	31
46	Effect of equilibration time on estimates of the maximum phosphorus sorption capacity of industrial by-products using the Langmuir model. Journal of Soils and Sediments, 2014, 14, 1818-1828.	1.5	13
47	Reduced nutrient pollution in a rural stream following septic tank upgrade and installation of runoff retention measures. Environmental Sciences: Processes and Impacts, 2014, 16, 1637.	1.7	9
48	Enhancing soluble phosphorus removal within buffer strips using industrial by-products. Environmental Science and Pollution Research, 2014, 21, 12257-12269.	2.7	8
49	Keeping agricultural soil out of rivers: Evidence of sediment and nutrient accumulation within field wetlands in the UK. Journal of Environmental Management, 2014, 135, 54-62.	3.8	56
50	Sediment tracers in water erosion studies: current approaches and challenges. Journal of Soils and Sediments, 2013, 13, 816-833.	1.5	124
51	Determining the cost of in-field mitigation options to reduce sediment and phosphorus loss. Land Use Policy, 2013, 30, 234-242.	2.5	20
52	Comparing the Accuracy of Several Field Methods for Measuring Gully Erosion. Soil Science Society of America Journal, 2012, 76, 1319-1332.	1.2	170
53	Revolutionary Land Use Change in the 21st Century: Is (Rangeland) Science Relevant?. Rangeland Ecology and Management, 2012, 65, 590-598.	1.1	35
54	Experiments in Earth surface process research. Catena, 2012, 91, 1-3.	2.2	1

JOHN N QUINTON

#	Article	IF	CITATIONS
55	Thermal enhancement of natural magnetism as a tool for tracing eroded soil. Earth Surface Processes and Landforms, 2012, 37, 1567-1572.	1.2	17
56	Comparing empirical models for sediment and phosphorus transfer from soils to water at field and catchment scale under data uncertainty. European Journal of Soil Science, 2012, 63, 211-223.	1.8	23
57	Multi-scale relationship between peatland vegetation type and dissolved organic carbon concentration. Ecological Engineering, 2012, 47, 182-188.	1.6	43
58	Evaluation of field wetlands for mitigation of diffuse pollution from agriculture: Sediment retention, cost and effectiveness. Environmental Science and Policy, 2012, 24, 110-119.	2.4	60
59	Patch vegetation and water redistribution above and below ground in southâ€east Spain. Ecohydrology, 2012, 5, 108-120.	1.1	20
60	Effects of soil compaction, rain exposure and their interaction on soil carbon dioxide emission. Earth Surface Processes and Landforms, 2012, 37, 994-999.	1.2	32
61	Processes controlling the development of a shielding layer on natural soil. European Journal of Soil Science, 2012, 63, 54-64.	1.8	10
62	Modeling the dynamics of soil erosion and sizeâ€selective sediment transport over nonuniform topography in flumeâ€scale experiments. Water Resources Research, 2011, 47, .	1.7	52
63	Controls over nutrient dynamics in overland flows on slopes representative of agricultural land in North West Europe. Geoderma, 2011, 164, 2-10.	2.3	13
64	Soil management in relation to sustainable agriculture and ecosystem services. Food Policy, 2011, 36, S72-S87.	2.8	379
65	Variability of interrill erosion at low slopes. Earth Surface Processes and Landforms, 2011, 36, 97-106.	1.2	46
66	Soil Erosion Modeling. Encyclopedia of Earth Sciences Series, 2011, , 746-747.	0.1	2
67	Comparative calculation of suspended sediment loads with respect to hysteresis effects (in the) Tj ETQq1 1 0.784	4314 rgBT 2.3	/gyerlock 1(
68	Hillslope scale surface runoff, sediment and nutrient losses associated with tramline wheelings. Earth Surface Processes and Landforms, 2010, 35, 699-706.	1.2	24
69	Soilâ€erosion models: where do we really stand?. Earth Surface Processes and Landforms, 2010, 35, 1344-1348.	1.2	10
70	The impact of agricultural soil erosion on biogeochemical cycling. Nature Geoscience, 2010, 3, 311-314.	5.4	686
71	Reply to â€~Erosion and climate'. Nature Geoscience, 2010, 3, 738-738.	5.4	8
72	Use of rare earth oxides as tracers to identify sediment source areas for agricultural hillslopes. Solid Earth, 2010, 1, 111-118.	1.2	19

#	Article	IF	CITATIONS
73	Ensemble evaluation of hydrological model hypotheses. Water Resources Research, 2010, 46, .	1.7	83
74	Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology, 2010, 122, 167-177.	1.1	561
75	Contributing understanding of mitigation options for phosphorus and sediment to a review of the efficacy of contemporary agricultural stewardship measures. Agricultural Systems, 2010, 103, 105-109.	3.2	33
76	Assessing catchment-scale erosion and yields of suspended solids from improved temperate grassland. Journal of Environmental Monitoring, 2010, 12, 731.	2.1	63
77	Mitigation Options for Sediment and Phosphorus Loss from Winterâ€sown Arable Crops. Journal of Environmental Quality, 2009, 38, 2121-2130.	1.0	52
78	Pumped rainfall simulators: the impact of rain pulses on sediment concentration and size. Earth Surface Processes and Landforms, 2009, 34, 1310-1314.	1.2	16
79	The effects of minimal tillage, contour cultivation and in-field vegetative barriers on soil erosion and phosphorus loss. Soil and Tillage Research, 2009, 106, 145-151.	2.6	77
80	Diffuse Pollution Swapping in Arable Agricultural Systems. Critical Reviews in Environmental Science and Technology, 2009, 39, 478-520.	6.6	90
81	Policy implications of pollution swapping. Physics and Chemistry of the Earth, 2009, 34, 589-594.	1.2	49
82	Uncertainties in Data and Models to Describe Event Dynamics of Agricultural Sediment and Phosphorus Transfer. Journal of Environmental Quality, 2009, 38, 1137-1148.	1.0	75
83	Variability in the Mobilization of Sediment and Phosphorus across 13 European Soils. Journal of Environmental Quality, 2009, 38, 742-750.	1.0	12
84	Soil erosion from sugar beet in Central Europe in response to climate change induced seasonal precipitation variations. Catena, 2008, 72, 91-105.	2.2	67
85	Investigating source areas of eroded sediments transported in concentrated overland flow using rare earth element tracers. Catena, 2008, 74, 31-36.	2.2	51
86	Rethinking the Contribution of Drained and Undrained Grasslands to Sedimentâ€Related Water Quality Problems. Journal of Environmental Quality, 2008, 37, 906-914.	1.0	62
87	Enrichment of Heavy Metals in Sediment Resulting from Soil Erosion on Agricultural Fields. Environmental Science & Technology, 2007, 41, 3495-3500.	4.6	168
88	Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands: a critical note on modelling of phosphorus transfers. Hydrological Processes, 2007, 21, 557-562.	1.1	22
89	An environmental soil test to estimate the intrinsic risk of sediment and phosphorus mobilization from European soils. Soil Use and Management, 2007, 23, 57-70.	2.6	36
90	The effect of incorporating slurries on the transport of faecal coliforms in overland flow. Soil Use and Management, 2006, 19, 185-186.	2.6	2

JOHN N QUINTON

#	Article	IF	CITATIONS
91	Soil carbon losses by water erosion: Experimentation and modeling at field and national scales in the UK. Agriculture, Ecosystems and Environment, 2006, 112, 87-102.	2.5	73
92	Effects of cattle manure on erosion rates and runoff water pollution by faecal coliforms. Journal of Environmental Management, 2006, 78, 97-101.	3.8	53
93	Soil erosion modelling with EUROSEM at Embori and Mukogodo catchments, Kenya. Earth Surface Processes and Landforms, 2006, 31, 579-588.	1.2	28
94	Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands: an overview of key issues. Hydrological Processes, 2006, 20, 4407-4413.	1.1	73
95	Sheet and Rill Erosion. , 2006, , 501-513.		37
96	Synthesis of the sednet work package 2 outcomes. Journal of Soils and Sediments, 2004, 4, 219-222.	1.5	20
97	The effects of minimal tillage and contour cultivation on surface runoff, soil loss and crop yield in the longâ€term Woburn Erosion Reference Experiment on sandy soil at Woburn, England. Soil Use and Management, 2004, 20, 343-349.	2.6	20
98	The effects of minimal tillage and contour cultivation on surface runoff, soil loss and crop yield in the long-term Woburn Erosion Reference Experiment on sandy soil at Woburn, England. Soil Use and Management, 2004, 20, 343-349.	2.6	77
99	Overland flow transport of pathogens from agricultural land receiving faecal wastes. Journal of Applied Microbiology, 2003, 94, 87-93.	1.4	176
100	The potential for soil phosphorus tests to predict phosphorus losses in overland flow. Journal of Plant Nutrition and Soil Science, 2003, 166, 432-437.	1.1	24
101	The effect of incorporating slurries on the transport of faecal coliforms in overland flow. Soil Use and Management, 2003, 19, 185-186.	2.6	9
102	Below-ground relationships of soil texture, roots and hydraulic conductivity in two-phase mosaic vegetation in South-east Spain. Journal of Arid Environments, 2002, 52, 535-553.	1.2	137
103	The water balance of two semi-arid shrubs on abandoned land in South-Eastern Spain after cold season rainfall. Hydrology and Earth System Sciences, 2002, 6, 913-926.	1.9	13
104	Erosion Modeling. , 2001, , 117-143.		11
105	Modelling of event-based soil erosion in Costa Rica, Nicaragua and Mexico: evaluation of the EUROSEM model. Catena, 2001, 44, 187-203.	2.2	38
106	The Selective Removal of Phosphorus from Soil. Journal of Environmental Quality, 2001, 30, 538.	1.0	200
107	Sensitivity analysis of EUROSEM using Monte Carlo simulation II: the effect of rills and rock fragments. Hydrological Processes, 2000, 14, 927-939.	1.1	19
108	Sensitivity analysis of EUROSEM using Monte Carlo simulation I: hydrological, soil and vegetation parameters. Hydrological Processes, 2000, 14, 915-926.	1.1	45

#	Article	IF	CITATIONS
109	Assessment of erosion hazard with the USLE and GIS: A case study of the Upper Ewaso Ng'iro North basin of Kenya. International Journal of Applied Earth Observation and Geoinformation, 2000, 2, 78-86.	1.4	87
110	Grassed buffer strips for the control of nitrate leaching to surface waters in headwater catchments. Ecological Engineering, 1999, 12, 299-313.	1.6	36
111	Reply to discussion on â€~The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments'. Earth Surface Processes and Landforms, 1999, 24, 567-568.	1.2	14
112	Evaluation of the EUROSEM model using data from the Catsop watershed, The Netherlands. Catena, 1999, 37, 507-519.	2.2	44
113	Phosphorus losses from arable land in England. Soil Use and Management, 1998, 14, 168-174.	2.6	57
114	The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 1998, 23, 527-544.	1.2	1,041
115	EUROSEM: An Evaluation with Single Event Data from the C5 Watershed, Oklahoma, USA. , 1998, , 65-74.		13
116	A rainfall simulation study of soil erosion on rangeland in Swaziland. Soil and Tillage Research, 1997, 11, 291-299.	0.4	37
117	Reducing predictive uncertainty in model simulations: a comparison of two methods using the European Soil Erosion Model (EUROSEM). Catena, 1997, 30, 101-117.	2.2	79
118	The influence of vegetation species and plant properties on runoff and soil erosion: results from a rainfall simulation study in south east Spain. Soil Use and Management, 1997, 13, 143-148.	2.6	98
119	Modelling Methodology for Soil Erosion Assessment and Soil Conservation Design: The EUROSEM Approach. Outlook on Agriculture, 1994, 23, 5-9.	1.8	25
120	Assessing Water Erosion Processes in Degraded Area Using Unmanned Aerial Vehicle Imagery. Revista Brasileira De Ciencia Do Solo, 0, 43, .	0.5	2