Kefa Cen

List of Publications by Citations

Source: https://exaly.com/author-pdf/8016917/kefa-cen-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

346
papers

6,968
citations

h-index

67
g-index

8,332
ext. papers

8,332
ext. citations

5.4
avg, IF

L-index

#	Paper	IF	Citations
346	Green preparation of reduced graphene oxide for sensing and energy storage applications. <i>Scientific Reports</i> , 2014 , 4, 4684	4.9	322
345	Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. <i>Nanoscale</i> , 2013 , 5, 5180-204	7.7	284
344	Emerging energy and environmental applications of vertically-oriented graphenes. <i>Chemical Society Reviews</i> , 2015 , 44, 2108-21	58.5	220
343	Boosting biomethane yield and production rate with graphene: The potential of direct interspecies electron transfer in anaerobic digestion. <i>Bioresource Technology</i> , 2017 , 239, 345-352	11	188
342	Temporal-spatial changes in viabilities and electrochemical properties of anode biofilms. <i>Environmental Science & Environmental Science & Environment</i>	10.3	130
341	Mercury Oxidation over a Vanadia-based Selective Catalytic Reduction Catalyst. <i>Energy & amp; Fuels</i> , 2009 , 23, 253-259	4.1	124
340	Effects of torrefaction on hemicellulose structural characteristics and pyrolysis behaviors. <i>Bioresource Technology</i> , 2016 , 218, 1106-14	11	111
339	Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes. <i>Bioresource Technology</i> , 2016 , 207, 213-9	11	109
338	Investigating hydrothermal pretreatment of food waste for two-stage fermentative hydrogen and methane co-production. <i>Bioresource Technology</i> , 2017 , 241, 491-499	11	108
337	Non-Thermal Plasmas for VOCs Abatement. Plasma Chemistry and Plasma Processing, 2014, 34, 1033-10	065 6	102
336	Growth optimisation of microalga mutant at high COItoncentration to purify undiluted anaerobic digestion effluent of swine manure. <i>Bioresource Technology</i> , 2015 , 177, 240-6	11	88
335	Effects of PbClibn selective catalytic reduction of NO with NHibver vanadia-based catalysts. Journal of Hazardous Materials, 2014 , 274, 270-8	12.8	84
334	Biodiesel from wet microalgae: extraction with hexane after the microwave-assisted transesterification of lipids. <i>Bioresource Technology</i> , 2014 , 170, 69-75	11	80
333	Characterisation of water hyacinth with microwave-heated alkali pretreatment for enhanced enzymatic digestibility and hydrogen/methane fermentation. <i>Bioresource Technology</i> , 2015 , 182, 1-7	11	80
332	Conversion of waste cooking oil to jet biofuel with nickel-based mesoporous zeolite Y catalyst. <i>Bioresource Technology</i> , 2015 , 197, 289-94	11	78
331	Biodiesel production from wet microalgae by using graphene oxide as solid acid catalyst. <i>Bioresource Technology</i> , 2016 , 221, 344-349	11	73
330	Enhancing the growth rate and astaxanthin yield of Haematococcus pluvialis by nuclear irradiation and high concentration of carbon dioxide stress. <i>Bioresource Technology</i> , 2016 , 204, 49-54	11	69

329	Inhibitory effects of furan derivatives and phenolic compounds on dark hydrogen fermentation. <i>Bioresource Technology</i> , 2015 , 196, 250-5	11	68
328	Mechanism study on cellulose pyrolysis using thermogravimetric analysis coupled with infrared spectroscopy. <i>Frontiers of Energy and Power Engineering in China</i> , 2007 , 1, 413-419		68
327	Multifunctional Solar Waterways: Plasma-Enabled Self-Cleaning Nanoarchitectures for Energy-Efficient Desalination. <i>Advanced Energy Materials</i> , 2019 , 9, 1901286	21.8	66
326	Investigation of hybrid plasma-catalytic removal of acetone over CuO/FAl2O3 catalysts using response surface method. <i>Chemosphere</i> , 2016 , 155, 9-17	8.4	65
325	A review on black carbon emissions, worldwide and in China. <i>Chemosphere</i> , 2014 , 107, 83-93	8.4	63
324	Edge effects in vertically-oriented graphene based electric double-layer capacitors. <i>Journal of Power Sources</i> , 2016 , 324, 309-316	8.9	62
323	Inhibition of microbial growth on air cathodes of single chamber microbial fuel cells by incorporating enrofloxacin into the catalyst layer. <i>Biosensors and Bioelectronics</i> , 2015 , 72, 44-50	11.8	61
322	Improving growth rate of microalgae in a 1191m(2) raceway pond to fix CO2 from flue gas in a coal-fired power plant. <i>Bioresource Technology</i> , 2015 , 190, 235-41	11	60
321	Enhancing growth rate and lipid yield of Chlorella with nuclear irradiation under high salt and CO2 stress. <i>Bioresource Technology</i> , 2016 , 203, 220-7	11	58
320	Oil Recovery from Oil Sludge through Combined Ultrasound and Thermochemical Cleaning Treatment. <i>Industrial & Discourse Engineering Chemistry Research</i> , 2012 , 51, 9213-9217	3.9	58
319	Comparison of ANN (MLP), ANFIS, SVM, and RF models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators. <i>Waste Management</i> , 2017 , 68, 186-197	8.6	57
318	Improvement of the energy conversion efficiency of Chlorella pyrenoidosa biomass by a three-stage process comprising dark fermentation, photofermentation, and methanogenesis. <i>Bioresource Technology</i> , 2013 , 146, 436-443	11	56
317	A Cu foam cathode used as a PtRGO catalyst matrix to improve CO2 reduction in a photoelectrocatalytic cell with a TiO2 photoanode. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 12947-129	57	53
316	The Slurrying Properties of Coal Water Slurries Containing Raw Sewage Sludge. <i>Energy & amp; Fuels</i> , 2011 , 25, 747-752	4.1	51
315	A study on the mechanism research on cellulose pyrolysis under catalysis of metallic salts. <i>Korean Journal of Chemical Engineering</i> , 2007 , 24, 336-340	2.8	51
314	Optimizing catalysis conditions to decrease aromatic hydrocarbons and increase alkanes for improving jet biofuel quality. <i>Bioresource Technology</i> , 2014 , 158, 378-82	11	50
313	Design of Supercapacitor Electrodes Using Molecular Dynamics Simulations. <i>Nano-Micro Letters</i> , 2018 , 10, 33	19.5	49
312	Particle-scale investigation of the solid dispersion and residence properties in a 3-D spout-fluid bed. <i>AICHE Journal</i> , 2014 , 60, 2788-2804	3.6	48

311	Subcritical water hydrolysis of rice straw for reducing sugar production with focus on degradation by-products and kinetic analysis. <i>Bioresource Technology</i> , 2015 , 186, 8-14	11	47
310	Graphene Array-Based Anti-fouling Solar Vapour Gap Membrane Distillation with High Energy Efficiency. <i>Nano-Micro Letters</i> , 2019 , 11, 51	19.5	46
309	Hydrogen production using amino acids obtained by protein degradation in waste biomass by combined dark- and photo-fermentation. <i>Bioresource Technology</i> , 2015 , 179, 13-19	11	46
308	Combining Support Vector Regression and Ant Colony Optimization to Reduce NOx Emissions in Coal-Fired Utility Boilers. <i>Energy & Doublest Support Supp</i>	4.1	45
307	Properties of Coal Water Slurry Prepared with the Solid and Liquid Products of Hydrothermal Dewatering of Brown Coal. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 4511-4517	3.9	44
306	High-Mass-Loading Porous Ti3C2Tx Films for Ultrahigh-Rate Pseudocapacitors. <i>ACS Energy Letters</i> , 2020 , 5, 2266-2274	20.1	43
305	Waste incineration, PVC, and dioxins. Journal of Material Cycles and Waste Management, 2011, 13, 190-1	3 74	43
304	Improving pollutants removal by microalgae Chlorella PY-ZU1 with 15% CO2 from undiluted anaerobic digestion effluent of food wastes with ozonation pretreatment. <i>Bioresource Technology</i> , 2016 , 216, 273-9	11	41
303	Fermentative hydrogen and methane cogeneration from cassava residues: effect of pretreatment on structural characterization and fermentation performance. <i>Bioresource Technology</i> , 2015 , 179, 407-4	113	40
302	Microstructures and functional groups of Nannochloropsis sp. cells with arsenic adsorption and lipid accumulation. <i>Bioresource Technology</i> , 2015 , 194, 305-11	11	39
301	Enhanced flashing light effect with up-down chute baffles to improve microalgal growth in a raceway pond. <i>Bioresource Technology</i> , 2015 , 190, 29-35	11	39
300	Molecular Origin of Electric Double-Layer Capacitance at Multilayer Graphene Edges. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 153-160	6.4	38
299	The Reaction of Poisonous Alkali Oxides with Vanadia SCR Catalyst and the Afterward Influence: A DFT and Experimental Study. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 1905-1912	3.8	38
298	Mutation of Spirulina sp. by nuclear irradiation to improve growth rate under 15% carbon dioxide in flue gas. <i>Bioresource Technology</i> , 2017 , 238, 650-656	11	37
297	Microstructure and antioxidative capacity of the microalgae mutant Chlorella PY-ZU1 during tilmicosin removal from wastewater under 15% CO. <i>Journal of Hazardous Materials</i> , 2017 , 324, 414-419	12.8	37
296	Transcriptome and key genes expression related to carbon fixation pathways in PY-ZU1 cells and their growth under high concentrations of CO. <i>Biotechnology for Biofuels</i> , 2017 , 10, 181	7.8	37
295	Measurement of water content and moisture distribution in sludge by 1H nuclear magnetic resonance spectroscopy. <i>Drying Technology</i> , 2016 , 34, 267-274	2.6	37
294	Relationship between the molecular structure of V2O5/TiO2 catalysts and the reactivity of SO2 oxidation. <i>Catalysis Science and Technology</i> , 2016 , 6, 1187-1194	5.5	36

(2017-2016)

293	Identification of the reaction pathway and reactive species for the selective catalytic reduction of NO with NH3 over cerium iobium oxide catalysts. <i>Catalysis Science and Technology</i> , 2016 , 6, 2136-2142	5.5	35
292	Molecular Insights into Aqueous NaCl Electrolytes Confined within Vertically-oriented Graphenes. <i>Scientific Reports</i> , 2015 , 5, 14652	4.9	35
291	Transcriptome sequencing and metabolic pathways of astaxanthin accumulated in Haematococcus pluvialis mutant under 15% CO. <i>Bioresource Technology</i> , 2017 , 228, 99-105	11	34
290	Factors Impacting Gaseous Mercury Speciation in Postcombustion [IEnergy & Compaction of the Compaction	9 5 4.1	33
289	Gradient domestication of Haematococcus pluvialis mutant with 15% CO2 to promote biomass growth and astaxanthin yield. <i>Bioresource Technology</i> , 2016 , 216, 340-4	11	32
288	Numerical simulation of acoustic wake effect in acoustic agglomeration under Oseen flow condition. <i>Science Bulletin</i> , 2012 , 57, 2404-2412		32
287	Investigation of the promotion effect of WO3 on the decomposition and reactivity of NH4HSO4 with NO on V2O5INO3/TiO2 SCR catalysts. <i>RSC Advances</i> , 2016 , 6, 55584-55592	3.7	31
286	Direct Numerical Simulation of Subsonic Round Turbulent Jet. <i>Flow, Turbulence and Combustion</i> , 2010 , 84, 669-686	2.5	31
285	Multi-objective optimization of the coal combustion performance with artificial neural networks and genetic algorithms. <i>International Journal of Energy Research</i> , 2005 , 29, 499-510	4.5	31
284	Enhanced energy recovery from cassava ethanol wastewater through sequential dark hydrogen, photo hydrogen and methane fermentation combined with ammonium removal. <i>Bioresource Technology</i> , 2016 , 214, 686-691	11	31
283	Temperature dependence of ion diffusion coefficients in NaCl electrolyte confined within graphene nanochannels. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 7678-7688	3.6	30
282	Synthesis, characterization and catalytic performances of Cu- and Mn-containing ordered mesoporous carbons for the selective catalytic reduction of NO with NH3. <i>Catalysis Science and Technology</i> , 2015 , 5, 1267-1279	5.5	30
281	Enhanced hydrogen production by methanol decomposition using a novel rotating gliding arc discharge plasma. <i>RSC Advances</i> , 2016 , 6, 12770-12781	3.7	30
2 80	In vivo kinetics of lipids and astaxanthin evolution in Haematococcus pluvialis mutant under 15% CO using Raman microspectroscopy. <i>Bioresource Technology</i> , 2017 , 244, 1439-1444	11	29
279	Solar-Enhanced Plasma-Catalytic Oxidation of Toluene over a Bifunctional Graphene Fin Foam Decorated with Nanofin-like MnO. <i>ACS Catalysis</i> , 2020 , 10, 4420-4432	13.1	29
278	Catalysis Mechanism Study of Potassium Salts on Cellulose Pyrolysis by Using TGA-FTIR Analysis. Journal of Chemical Engineering of Japan, 2008 , 41, 1133-1142	0.8	29
277	Controllable synthesis of hierarchical MnO/TiO composite nanofibers for complete oxidation of low-concentration acetone. <i>Journal of Hazardous Materials</i> , 2017 , 337, 105-114	12.8	28
276	Kinetic-Dominated Charging Mechanism within Representative Aqueous Electrolyte-based Electric Double-Layer Capacitors. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 3703-3710	6.4	28

275	Decrease in light/dark cycle of microalgal cells with computational fluid dynamics simulation to improve microalgal growth in a raceway pond. <i>Bioresource Technology</i> , 2016 , 220, 352-359	11	28
274	Transcriptome-based analysis on carbon metabolism of Haematococcus pluvialis mutant under 15% CO. <i>Bioresource Technology</i> , 2017 , 233, 313-321	11	27
273	Quantitative Measurement of Atomic Potassium in Plumes over Burning Solid Fuels Using Infrared-Diode Laser Spectroscopy. <i>Energy & Damp; Fuels</i> , 2017 , 31, 2831-2837	4.1	27
272	Enhancement of the denitrification activity by exoelectrogens in single-chamber air cathode microbial fuel cells. <i>Chemosphere</i> , 2019 , 225, 548-556	8.4	27
271	Chemical characteristics and sources of PM during the 2016 summer in Hangzhou. <i>Environmental Pollution</i> , 2018 , 232, 42-54	9.3	27
270	Fine particle migration and collection in a wet electrostatic precipitator. <i>Journal of the Air and Waste Management Association</i> , 2017 , 67, 498-506	2.4	27
269	Study on Catalytic Pyrolysis of Manchurian Ash for Production of Bio-Oil. <i>International Journal of Green Energy</i> , 2010 , 7, 300-309	3	27
268	Improving CO2 fixation with microalgae by bubble breakage in raceway ponds with up-down chute baffles. <i>Bioresource Technology</i> , 2016 , 201, 174-81	11	26
267	CO2 Adsorption Performance of Ionic Liquid [P66614][2-Op] Loaded onto Molecular Sieve MCM-41 Compared to Pure Ionic Liquid in Biohythane/Pure CO2 Atmospheres. <i>Energy & Document States</i> 2016, 30, 32	25 1-3 25	66 ²⁶
266	Wettability of vertically-oriented graphenes with different intersheet distances. <i>RSC Advances</i> , 2017 , 7, 2667-2675	3.7	25
265	Bimetallic cerium-copper nanoparticles embedded in ordered mesoporous carbons as effective catalysts for the selective catalytic reduction of NO with NH\(\textit{D}\) Journal of Colloid and Interface Science, 2015, 456, 66-75	9.3	25
264	Oxidative Adsorption of Elemental Mercury by Activated Carbon in Simulated Coal-Fired Flue Gas. <i>Energy & Energy & Energ</i>	4.1	25
263	Pyrolysis of wood species based on the compositional analysis. <i>Korean Journal of Chemical Engineering</i> , 2009 , 26, 548-553	2.8	25
262	Ionic-liquid pretreatment of cassava residues for the cogeneration of fermentative hydrogen and methane. <i>Bioresource Technology</i> , 2017 , 228, 348-354	11	24
261	Characteristics of Coal Partial Gasification on a Circulating Fluidized Bed Reactor. <i>Energy & Energy </i>	4.1	24
260	Adsorption of NO on ordered mesoporous carbon and its improvement by cerium. <i>RSC Advances</i> , 2014 , 4, 16281	3.7	24
259	Wetted-wall column study on CO2 absorption kinetics enhancement by additive of nanoparticles 2015 , 5, 682-694		24
258	Catalytic Thermal Decomposition of Hydrogen Iodide in Sulfur l bdine Cycle for Hydrogen Production. <i>Energy & Double Composition (1988)</i> 22, 1227-1232	4.1	24

(2016-2017)

257	Pyrolysis Characteristics and Evolution of Char Structure during Pulverized Coal Pyrolysis in Drop Tube Furnace: Influence of Temperature. <i>Energy & Energy </i>	4.1	23	
256	Controllable synthesis of novel hierarchical V2O5/TiO2 nanofibers with improved acetone oxidation performance. <i>RSC Advances</i> , 2015 , 5, 30416-30424	3.7	23	
255	Improving microalgal growth with reduced diameters of aeration bubbles and enhanced mass transfer of solution in an oscillating flow field. <i>Bioresource Technology</i> , 2016 , 211, 429-34	11	23	
254	Fractal microstructure characterization of wet microalgal cells disrupted with ultrasonic cavitation for lipid extraction. <i>Bioresource Technology</i> , 2014 , 170, 138-143	11	23	
253	Investigation of Slagging Characteristics in a 300 kW Test Furnace: Effect of Deposition Surface Temperature. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 7233-7246	3.9	23	
252	New weighted-sum-of-gray-gases model for typical pressurized oxy-fuel conditions. <i>International Journal of Energy Research</i> , 2017 , 41, 2576-2595	4.5	23	
251	Enhanced solution velocity between dark and light areas with horizontal tubes and triangular prism baffles to improve microalgal growth in a flat-panel photo-bioreactor. <i>Bioresource Technology</i> , 2016 , 211, 519-26	11	23	
250	Smog chamber study of the role of NH in new particle formation from photo-oxidation of aromatic hydrocarbons. <i>Science of the Total Environment</i> , 2018 , 619-620, 927-937	10.2	23	
249	Characteristics of Dielectric Barrier Discharge Ozone Synthesis for Different Pulse Modes. <i>Plasma Chemistry and Plasma Processing</i> , 2017 , 37, 1165-1173	3.6	22	
248	Meteorological and chemical impacts on PM during a haze episode in a heavily polluted basin city of eastern China. <i>Environmental Pollution</i> , 2019 , 250, 520-529	9.3	22	
247	Enhancement of NO oxidation activity and SO2 resistance over LaMnO3+[perovskites catalysts with metal substitution and acid treatment. <i>Applied Surface Science</i> , 2019 , 479, 234-246	6.7	22	
246	Physicochemical characterization of wet microalgal cells disrupted with instant catapult steam explosion for lipid extraction. <i>Bioresource Technology</i> , 2015 , 191, 66-72	11	21	
245	Effects of the physical and chemical properties of petroleum coke on its slurryability. <i>Petroleum Science</i> , 2012 , 9, 251-256	4.4	21	
244	Density Functional Study of NO Desorption from Oxidation of Nitrogen Containing Char by O2. <i>Combustion Science and Technology</i> , 2012 , 184, 445-455	1.5	21	
243	Effect of Mineral Matter on NO Reduction in Coal Reburning Process. Energy & Document 2007, 21, 20	38 _† 204	3 21	
242	Effects of Pyrolysis Atmosphere and Temperature on Coal Char Characteristics and Gasification Reactivity. <i>Energy Technology</i> , 2016 , 4, 543-550	3.5	21	
241	Rotating Gliding Arc Assisted Water Splitting in Atmospheric Nitrogen. <i>Plasma Chemistry and Plasma Processing</i> , 2016 , 36, 813-834	3.6	21	
240	The effect of microbubbles on gas-liquid mass transfer coefficient and degradation rate of COD in wastewater treatment. <i>Water Science and Technology</i> , 2016 , 73, 1969-77	2.2	21	

(2010-2018)

221	polydimethylsiloxane membranes for CO separation. <i>Journal of Colloid and Interface Science</i> , 2018 , 510, 12-19	9.3	16	
220	Improving CO2 permeability of ceramic hollow fibre-supported composite membranes by blending an ionic liquid in the Pebax/PEGDME selective layer. <i>RSC Advances</i> , 2016 , 6, 2055-2064	3.7	16	
219	Modeling of Combustion Process in 600 MW Utility Boiler Using Comprehensive Models and Its Experimental Validation. <i>Energy & Experimental Validation Energy & Experimental Validation Experimenta</i>	4.1	16	
218	Superstructure-Enabled Anti-Fouling Membrane for Efficient Photothermal Distillation. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 20151-20158	8.3	16	
217	Influence of wettability on the electrolyte electrosorption within graphene-like nonconfined and confined space. <i>International Journal of Heat and Mass Transfer</i> , 2019 , 133, 416-425	4.9	16	
216	Hydrogen Production from Methanol Decomposition in a Gliding Arc Discharge Plasma with High Processing Capacity. <i>Chemistry Letters</i> , 2015 , 44, 1315-1317	1.7	15	
215	Kinetic Modeling of Homogeneous Low-Temperature Multi-Pollutant Oxidation by Ozone. <i>Ozone: Science and Engineering</i> , 2007 , 29, 207-214	2.4	15	
214	Solid-state NMR Study of Ion Adsorption and Charge Storage in Graphene Film Supercapacitor Electrodes. <i>Scientific Reports</i> , 2016 , 6, 39689	4.9	15	
213	Developing a water-circulating column photobioreactor for microalgal growth with low energy consumption. <i>Bioresource Technology</i> , 2016 , 221, 492-497	11	15	
212	Promoting Photochemical Efficiency of Chlorella PY-ZU1 with Enhanced Velocity Field and Turbulent Kinetics in a Novel Tangential Spiral-Flow Column Photobioreactor. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 384-393	8.3	15	
211	Modelling alkali metal emissions in large-eddy simulation of a preheated pulverised-coal turbulent jet flame using tabulated chemistry. <i>Combustion Theory and Modelling</i> , 2018 , 22, 203-236	1.5	15	
210	Reliability of Constant Charge Method for Molecular Dynamics Simulations on EDLCs in Nanometer and Sub-Nanometer Spaces. <i>ChemElectroChem</i> , 2017 , 4, 2486-2493	4.3	14	
209	Electrolysis of the Bunsen Reaction and Properties of the Membrane in the SulfurIbdine Thermochemical Cycle. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 13581-13588	3.9	14	
208	Simultaneous In-Situ Measurement of Soot Volume Fraction, H2O Concentration, and Temperature in an Ethylene/Air Premixed Flame Using Tunable Diode Laser Absorption Spectroscopy. <i>Combustion Science and Technology</i> , 2017 , 189, 1571-1590	1.5	13	
207	Ozone Production with Dielectric Barrier Discharge from Air: The Influence of Pulse Polarity. <i>Ozone: Science and Engineering</i> , 2018 , 40, 494-502	2.4	13	
206	Simulation of a Lignite-Based Polygeneration System Coproducing Electricity and Tar with Carbon Capture. <i>Chemical Engineering and Technology</i> , 2015 , 38, 463-472	2	13	
205	Viscosity and aggregation structure of nanocolloidal dispersions. <i>Science Bulletin</i> , 2012 , 57, 3644-3651		13	
204	Full-Scale Numerical Investigation of a Selective Noncatalytic Reduction (SNCR) System in a 100 MW Utility Boiler with Complex Chemistry and Decoupling Approach. <i>Energy & Decoupling Approach</i> 24, 543	2 ⁴ 5 ¹ 44	0 ¹³	

203	Measurement on particle rotation speed in gasBolid flow based on identification of particle rotation axis. <i>Experiments in Fluids</i> , 2008 , 45, 1117-1128	2.5	13
202	Hierarchical, Vertically-Oriented Carbon Nanowall Foam Supercapacitor using Room Temperature Ionic Liquid Mixture for AC Line Filtering with Ultrahigh Energy Density. <i>ChemElectroChem</i> , 2019 , 6, 216	7 ⁴ 2 ³ 17:	3 ¹³
201	In Situ Measurements of the Release Characteristics and Catalytic Effects of Different Chemical Forms of Sodium during Combustion of Zhundong Coal. <i>Energy & Energy </i>	4.1	13
200	Experimental Study on the NOx Removal by Scrubbing with UreaH2O2 Solution after NO Partial Preoxidation. <i>Energy & Documents</i> 2019, 33, 6600-6605	4.1	12
199	HI Decomposition over Carbon-Based and Ni-Impregnated Catalysts of the SulfurIbdine Cycle for Hydrogen Production. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 1498-1504	3.9	12
198	Experimental Investigation of the Growth of Ash Deposits with and without Additives through a Digital Image Technique. <i>Energy & Digital Image Technique</i> . <i>Energy & Digital Image Technique</i> . <i>Energy & Digital Image Technique</i> .	4.1	12
197	Experimental study on the aerodynamic and separating characteristics of a novel tiny-oil ignition cyclone burner for down-fired utility boiler. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2012 , 7, 624-63	32 ^{1.3}	12
196	Enhancing hydrogen production of Enterobacter aerogenes by heterologous expression of hydrogenase genes originated from Synechocystis sp. <i>Bioresource Technology</i> , 2016 , 216, 976-80	11	12
195	Well-Aligned Hierarchical Graphene-Based Electrodes for Pseudocapacitors with Outstanding Low-Temperature Stability. <i>ChemElectroChem</i> , 2019 , 6, 2788-2795	4.3	11
194	Changes in the physicochemical characteristics and spontaneous combustion propensity of Ximeng lignite after hydrothermal dewatering. <i>Canadian Journal of Chemical Engineering</i> , 2018 , 96, 2387-2394	2.3	11
193	Improving the CO2 fixation rate by increasing flow rate of the flue gas from microalgae in a raceway pond. <i>Korean Journal of Chemical Engineering</i> , 2018 , 35, 498-502	2.8	11
192	Optimization of coating solution viscosity of hollow fiber-supported polydimethylsiloxane membrane for CO2/H2 separation. <i>Journal of Applied Polymer Science</i> , 2018 , 135, 45765	2.9	11
191	Effects of Metal Ions in Organic Wastewater on Coal Water Slurry and Dispersant Properties. <i>Energy & Dispersant Properties</i> . 2019, 33, 7110-7117	4.1	11
190	Experimental study of NO2 reduction in N2/Ar and O2/Ar mixtures by pulsed corona discharge. Journal of Environmental Sciences, 2014 , 26, 2249-56	6.4	11
189	Performance of the Electrochemical Bunsen Reaction Using Two Different Proton Exchange Membranes in the SulfurIbdine Cycle. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 4966-4	979	11
188	Conversion of Fuel-N to N2O and NOx during Coal Combustion in Combustors of Different Scale. <i>Chinese Journal of Chemical Engineering</i> , 2013 , 21, 999-1006	3.2	11
187	Coal Char Gasification on a Circulating Fluidized Bed for Hydrogen Generation: Experiments and Simulation. <i>Energy Technology</i> , 2015 , 3, 1059-1067	3.5	11
186	Effect of KCl on the selective catalytic reduction of NO with NH3 over vanadia-based catalysts for biomass combustion. <i>Environmental Progress and Sustainable Energy</i> , 2014 , 33, 390-395	2.5	11

185	Premixed jet flame characteristics of syngas using OH planar laser induced fluorescence. <i>Science Bulletin</i> , 2011 , 56, 2862-2868		11
184	PCDD/F emissions during startup and shutdown of a hazardous waste incinerator. <i>Chemosphere</i> , 2017 , 181, 645-654	8.4	10
183	Enhanced hydrogen production of Enterobacter aerogenes mutated by nuclear irradiation. <i>Bioresource Technology</i> , 2017 , 227, 50-55	11	10
182	Conversion pathways of palm oil into jet biofuel catalyzed by mesoporous zeolites. <i>RSC Advances</i> , 2016 , 6, 103965-103972	3.7	10
181	Improving microalgal growth with small bubbles in a raceway pond with swing gas aerators. <i>Bioresource Technology</i> , 2016 , 216, 267-72	11	10
180	In-Situ Characterization of Coal Particle Combustion via Long Working Distance Digital In-Line Holography. <i>Energy & Distance States</i> 2018, 32, 8277-8286	4.1	10
179	Systematic method of applying ANN for chemical kinetics reduction in turbulent premixed combustion modeling. <i>Science Bulletin</i> , 2013 , 58, 486-492		10
178	Highly efficient and economical nitrogen oxides controlled by an in-furnace urea solution pyrolysis coupled with SCR system for a coal-fired utility boiler. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2013 , 8, 593-606	1.3	10
177	Research on coal staged conversion poly-generation system based on fluidized bed. <i>International Journal of Coal Science and Technology</i> , 2014 , 1, 39-45	4.5	10
176	NUMERICAL PREDICTION OF TUBE ROW EROSION BY COAL ASH IMPACTION. <i>Chemical Engineering Communications</i> , 1990 , 95, 75-88	2.2	10
175	Gasification property of coalBilfield wastewaterBlurry and microscopic mechanism analysis. <i>Petroleum Science and Technology</i> , 2016 , 34, 1068-1074	1.4	10
174	Facile Preparation of Nickel Nanoparticle-Modified Carbon Nanotubes with Application as a Nonenzymatic Electrochemical Glucose Sensor. <i>Analytical Letters</i> , 2016 , 49, 568-578	2.2	9
173	Catalytic Effect of Metal Chloride Additives on the Volatile Gas Release Characteristics for High-Temperature Lignite Pyrolysis. <i>Energy & Damp; Fuels</i> , 2019 , 33, 9437-9445	4.1	9
172	Multiparameter Measurement in Ethylene Diffusion Flame Based on Time-Division Multiplexed Tunable Diode Laser Absorption Spectroscopy. <i>IEEE Photonics Journal</i> , 2019 , 11, 1-12	1.8	9
171	Porous ceramic hollow fiber-supported Pebax/PEGDME composite membrane for CO2 separation from biohythane. <i>RSC Advances</i> , 2015 , 5, 60453-60459	3.7	9
170	Primary Fragmentation Behavior Investigation in Pulverized Coal Combustion with High-Speed Digital Inline Holography. <i>Energy & Digital Inline Holography</i> . <i>Energy & Digital Inline Holography</i> . <i>Energy & Digital Inline Holography</i> .	4.1	9
169	Highly-branched vertically-oriented graphene nanosheets with dense open graphitic edge planes as Pt support for methanol oxidation. <i>Physica Status Solidi (B): Basic Research</i> , 2014 , 251, 829-837	1.3	9
168	Study of ashes from a medical waste incinerator in China: Physical and chemical characteristics on fly ash, ash deposits and bottom ash. <i>Environmental Progress and Sustainable Energy</i> , 2013 , 32, 496-504	2.5	9

167	Multi-pin dc glow discharge PECVD for uniform growth of vertically oriented graphene at atmospheric pressure. <i>Physica Status Solidi (B): Basic Research</i> , 2014 , 251, 155-161	1.3	9
166	Numerical Simulation and Experimental Study of Two-Phase Flow in a Vertical Pipe. <i>Aerosol Science and Technology</i> , 1997 , 27, 281-292	3.4	9
165	Direct numerical simulation of hydrogen turbulent lifted jet flame in a vitiated coflow. <i>Science Bulletin</i> , 2007 , 52, 2147-2156		9
164	Influence of Reactant Atmospheres and Temperature on Mechanism of Gasification of Coal Char Derived from Lignite. <i>Energy Technology</i> , 2016 , 4, 722-728	3.5	9
163	The effects of humidity and ammonia on the chemical composition of secondary aerosols from toluene/NOx photo-oxidation. <i>Science of the Total Environment</i> , 2020 , 728, 138671	10.2	9
162	Generation and Evolution of Surface Oxide Layer of Amorphous Boron during Thermal Oxidation: A Micro/nanofabricated Slice Measurement. <i>Propellants, Explosives, Pyrotechnics</i> , 2017 , 42, 532-540	1.7	8
161	Experimental studies on coal water slurries prepared from coal gasification wastewater. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2018 , 13, e2162	1.3	8
160	Behavior of Slagging Deposits during Coal and Biomass Co-combustion in a 300 kW Down-Fired Furnace. <i>Energy & Down Fuels</i> , 2018 , 32, 4399-4409	4.1	8
159	Gene expression and metabolic pathways related to cell growth and lipid synthesis in diatom Nitzschia ZJU2 after two rounds of mutagenesis by Frays. <i>RSC Advances</i> , 2014 , 4, 28463-28470	3.7	8
158	PbCl2-poisoning kinetics of V2O5/TiO2 catalysts for the selective catalytic reduction of NO with NH3. <i>Environmental Progress and Sustainable Energy</i> , 2015 , 34, 1085-1091	2.5	8
157	Process design and optimization of state-of-the-art carbon capture technologies. <i>Environmental Progress and Sustainable Energy</i> , 2014 , 33, 993-999	2.5	8
156	The Impact of Preheating on Stability Limits of Premixed HydrogenAir Combustion in a Microcombustor. <i>Heat Transfer Engineering</i> , 2012 , 33, 661-668	1.7	8
155	Improvement of Load-Following Capacity Based on the Flame Radiation Intensity Signal in a Power Plant. <i>Energy & Double Support Suppor</i>	4.1	8
154	Experimental study of the influence of acid wash on cellulose pyrolysis. <i>Frontiers of Chemical Engineering in China</i> , 2007 , 1, 35-39		8
153	Graphene Nanoplatelet and Reduced Graphene Oxide Functionalized by Ionic Liquid for CO2 Capture. <i>Energy & Documents</i> , 2018, 32, 6918-6925	4.1	8
152	NOx Reduction in a 130 t/h Biomass-Fired Circulating Fluid Bed Boiler Using Coupled Ozonation and Wet Absorption Technology. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 18134-1814	10 ^{8.9}	7
151	Study on the slurry ability and combustion behaviour of coal-bioferment residue of drugs-slurry. <i>Canadian Journal of Chemical Engineering</i> , 2018 , 96, 838-844	2.3	7
150	Influences of Hydrothermal Modification on Nitrogen Thermal Conversion of Low-Rank Coals. <i>Energy & Damp; Fuels</i> , 2016 , 30, 8125-8133	4.1	7

149	EFFECT OF CHEMICAL COMPOSITION ON SINTERING BEHAVIOR OF JINCHENG COAL ASH UNDER GASIFICATION ATMOSPHERE. <i>Chemical Engineering Communications</i> , 2012 , 199, 189-202	2.2	7
148	Graphene Supercapacitors: Vertically Oriented Graphene Bridging Active-Layer/Current-Collector Interface for Ultrahigh Rate Supercapacitors (Adv. Mater. 40/2013). <i>Advanced Materials</i> , 2013 , 25, 5798-	2 798	7
147	Quantum chemistry study on the mechanism of the reaction between ozone and 2,3,7,8-TCDD. <i>International Journal of Quantum Chemistry</i> , 2011 , 111, 1081-1091	2.1	7
146	Heat transfer in a large-scale circulating fluidized bed boiler. <i>Frontiers of Energy and Power Engineering in China</i> , 2007 , 1, 477-482		7
145	Ultrathick MoS 2 Films with Exceptionally High Volumetric Capacitance. Advanced Energy Materials, 2103	39.8	7
144	Source Apportionment of Volatile Organic Compounds (VOCs) during Ozone Polluted Days in Hangzhou, China. <i>Atmosphere</i> , 2019 , 10, 780	2.7	7
143	Mechanism underlying the effect of conventional drying on the grinding characteristics of Ximeng lignite. <i>Korean Journal of Chemical Engineering</i> , 2017 , 34, 1250-1259	2.8	6
142	Determination of soot particle size using time-gated laser-induced incandescence images. <i>Applied Physics B: Lasers and Optics</i> , 2017 , 123, 1	1.9	6
141	Simultaneous Measurement of Three-Dimensional Particle Temperature, Particle Concentration, and H2O Concentration Distributions Using Multispectral Flame Images. <i>Combustion Science and Technology</i> , 2017 , 189, 1891-1906	1.5	6
140	Solar Energy Conversion: Multifunctional Solar Waterways: Plasma-Enabled Self-Cleaning Nanoarchitectures for Energy-Efficient Desalination (Adv. Energy Mater. 30/2019). <i>Advanced Energy Materials</i> , 2019 , 9, 1970119	21.8	6
139	Hydrogen Sulfide Promotes Cell Division and Photosynthesis of Nannochloropsis oceanica with 15% Carbon Dioxide. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 16344-16354	8.3	6
138	A novel method of microwave heating mixed liquid-assisted regeneration of VIDEWO/ITIOI commercial SCR catalysts. <i>Environmental Geochemistry and Health</i> , 2015 , 37, 905-14	4.7	6
137	Note: Rapid reduction of graphene oxide paper by glow discharge plasma. <i>Review of Scientific Instruments</i> , 2015 , 86, 056101	1.7	6
136	Study on the slurrying and rheological properties of coalBilfield wastewaterBlurry. <i>Energy Sources, Part A: Recovery, Utilization and Environmental Effects</i> , 2016 , 38, 3687-3693	1.6	6
135	Adsorption of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans Vapors on Activated Carbon. <i>Environmental Engineering Science</i> , 2014 , 31, 664-670	2	6
134	Experimental Study on Dynamic Combustion Characteristics of Aluminum Particles. <i>Propellants, Explosives, Pyrotechnics</i> , 2017 , 42, 982-992	1.7	6
133	Substrate Effects in Graphene-Based Electric Double-Layer Capacitors: The Pivotal Interplays between Ions and Solvents. <i>ChemElectroChem</i> , 2017 , 4, 2966-2974	4.3	6
132	Numerical Investigation of Gas-Solid Two-Phase Flow in a Tiny-Oil Ignition Cyclone Burner for a 300-MW Down-Fired Pulverized Coal E ired Boiler. <i>Journal of Energy Engineering - ASCE</i> , 2014 , 140, 04013	đ ₇₀	6

microalgal biomass production and CO2 fixation. RSC Advances, 2014, 4, 42147-42154

two-bladed wind turbine. Science China Technological Sciences, 2017, 60, 1861-1869

bacteria. Environmental Progress and Sustainable Energy, 2017, 36, 1296-1300

Large-eddy simulation and experimental study on the turbulent wake flow characteristics of a

Improving fermentative hydrogen production from water hyacinth with genetically modified

5

3.5

2.5

115

113	NUMERICAL MODELING AND EXPERIMENTAL STUDY OF PARTICLE-LADEN COAXIAL JETS. <i>Chemical Engineering Communications</i> , 1989 , 86, 55-71	2.2	5	
112	Combined conventional thermal and microwave drying process for typical Chinese lignite. <i>Drying Technology</i> , 2019 , 37, 813-823	2.6	5	
111	Multi-linear antenna microwave plasma assisted large-area growth of 6 lb in. vertically oriented graphenes with high growth rate. <i>Review of Scientific Instruments</i> , 2020 , 91, 076105	1.7	5	
110	Experimental and numerical evaluation of a lab-scale external solar receiver. <i>Journal of Renewable and Sustainable Energy</i> , 2020 , 12, 043705	2.5	5	
109	Enhanced Solar Conversion of CO2 to CO Using Mn-doped TiO2 Based on Photo-thermochemical Cycle. <i>ChemistrySelect</i> , 2019 , 4, 236-244	1.8	5	
108	MXene-Based Electrodes for Supercapacitor Energy Storage. Energy & amp; Fuels, 2022, 36, 2390-2406	4.1	5	
107	Effects of CH4 Content on NO Formation in One-Dimensional Adiabatic Flames Investigated by Saturated Laser-Induced Fluorescence and CHEMKIN Modeling. <i>Energy & Energy & Energ</i>	3 ^{4.1}	4	
106	Pyrolytic characteristics of biodiesel prepared from lipids accumulated in diatom cells with growth regulation. <i>Journal of Bioscience and Bioengineering</i> , 2015 , 120, 161-6	3.3	4	
105	Splitting of CO2 via the Heterogeneous Oxidation of Zinc Powder in Thermochemical Cycles. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 534-542	3.9	4	
104	Reaction Mechanism Reduction for Ozone-Enhanced CH4/Air Combustion by a Combination of Directed Relation Graph with Error Propagation, Sensitivity Analysis and Quasi-Steady State Assumption. <i>Energies</i> , 2018 , 11, 1470	3.1	4	
103	Thermodynamic Analysis of Ash Mineral Phases in Combustion of High-Sulfur Coal with Lime. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 3064-3070	3.9	4	
102	Transitional phenomenon of particle dispersion in gas-solid two-phase flows. <i>Science Bulletin</i> , 2007 , 52, 408-417		4	
101	On coherent structures in a three-dimensional transitional plane jet. <i>Science in China Series D: Earth Sciences</i> , 2008 , 51, 386-396		4	
100	Measurements on CO Concentration and gas temperature at 1.58 um with Tunable Diode Laser Absorption Spectroscopy. <i>AIP Conference Proceedings</i> , 2007 ,	Ο	4	
99	NUMERICAL CALCULATIONS OF TUBE BUNDLES EROSION BY TURBULENT PARTICLE-LADEN GAS FLOWS. <i>Chemical Engineering Communications</i> , 1991 , 104, 209-225	2.2	4	
98	Phase change material enhanced sustained and energy-efficient solar-thermal water desalination. <i>Applied Energy</i> , 2021 , 301, 117463	10.7	4	
97	United Conversion Process Coupling CO Mineralization with Thermochemical Hydrogen Production. <i>Environmental Science & Environmental Science & Environ</i>	10.3	3	
96	Solar driven reduction of CO using Pt-Cu/C as a catalyst in a photoelectrochemical cell: experiment and mechanism study <i>RSC Advances</i> , 2019 , 9, 10635-10644	3.7	3	

95	Online blend-type identification during co-firing coal and biomass using SVM and flame emission spectrum in a pilot-scale furnace. <i>IET Renewable Power Generation</i> , 2019 , 13, 253-261	2.9	3
94	Highly Thermo-Conductive Three-Dimensional Graphene Aqueous Medium. <i>Nano-Micro Letters</i> , 2020 , 12, 138	19.5	3
93	Effect of granulating characteristics on harmless disposal of waste selective catalytic reduction catalyst in iron ore sintering process. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2020 , 15, e2428	1.3	3
92	Ion Dynamics of Water-in-Salt Electrolyte with Organic Solvents in Nanoporous Supercapacitor Electrodes. <i>ChemElectroChem</i> , 2020 , 7, 2048-2054	4.3	3
91	The Benefits of Small Quantities of Nitrogen in the Oxygen Feed to Ozone Generators. <i>Ozone:</i> Science and Engineering, 2018 , 40, 313-320	2.4	3
90	Experimental study of the combustion and NO emission behaviors during cofiring coal and biomass in O2/N2 and O2/H2O. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2018 , 13, e2198	1.3	3
89	Emission characteristics and vapour/particulate phase distributions of PCDD/F in a hazardous waste incinerator under transient conditions. <i>Royal Society Open Science</i> , 2018 , 5, 171079	3.3	3
88	Comparison of Combustion and Emission Characteristics of an Indonesian Lignite Washery Tailing Slurry with a Bituminous Coal in a Bench-Scale Bubbling/Circulating Fluidized Bed Combustor. <i>Energy & Documents</i> 2016, 30, 10835-10846	4.1	3
87	Effects of cytoplasm and reactant polarities on acid-catalyzed lipid transesterification in wet microalgal cells subjected to microwave irradiation. <i>Bioresource Technology</i> , 2016 , 200, 738-43	11	3
86	The formation mechanism and distribution of micro-aluminum oxide layer. <i>Journal of Thermal Analysis and Calorimetry</i> , 2018 , 133, 1335-1344	4.1	3
85	Metal chloride influence on syngas component during coal pyrolysis in fixed-bed and entrained flow drop-tube furnace. <i>Science China Technological Sciences</i> , 2019 , 62, 2029-2037	3.5	3
84	The influence of Na2SO3/NaHSO3 on the formation process of low-temperature ash deposition with an in situ measurement technique. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2019 , 14, e2351	1.3	3
83	Oxidative Adsorption of Elemental Mercury by Activated Carbon from Coconut Shell in Simulated Flue Gas. <i>Separation Science and Technology</i> , 2014 , 49, 1062-1066	2.5	3
82	Combined catalytic oxidation and activated carbon adsorption of dioxins. <i>Environmental Progress and Sustainable Energy</i> , 2015 , 34, 346-350	2.5	3
81	Covalently interconnected carbon nanotubes for enhanced charge transport in pseudocapacitors. <i>Physica Status Solidi (B): Basic Research</i> , 2015 , 252, 2236-2244	1.3	3
80	Quantum Chemical Calculations on the Reaction of Zinc and Water in Gas Phase. <i>Combustion Science and Technology</i> , 2014 , 186, 24-33	1.5	3
79	Experiments on the effect of the pressure on the mineral transformation of coal ash under the different reaction atmosphere. <i>Frontiers of Chemical Engineering in China</i> , 2010 , 4, 394-399		3
78	Straw combustion in circulating fluidized bed at low-temperature: Transformation and distribution of potassium. <i>Canadian Journal of Chemical Engineering</i> , 2010 , 88, n/a-n/a	2.3	3

77	Experimental study and product analysis of lignocellulosic biomass hydrolysis under extremely low acids. <i>Frontiers of Energy and Power Engineering in China</i> , 2008 , 2, 268-272		3	
76	PREDICTION OF DENSE TURBULENT PARTICLE LADEN RISER FLOW WITH A EULERIAN AND LAGRANGIAN COMBINED MODEL. <i>Chemical Engineering Communications</i> , 2000 , 179, 201-218	2.2	3	
<i>75</i>	Aligned Ti3C2TX Aerogel with High Rate Performance, Power Density and Sub-Zero-Temperature Stability. <i>Energies</i> , 2022 , 15, 1191	3.1	3	
74	High-Performance Pt Catalyst with Graphene/Carbon Black as a Hybrid Support for SO Electrocatalytic Oxidation. <i>Langmuir</i> , 2020 , 36, 20-27	4	3	
73	Interplay effect on simultaneous catalytic oxidation of NO and toluene over different crystal types of MnO2 catalysts. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 5433-5441	5.9	3	
72	Hierarchical Petal-on-Petal MnO2/Vertical Graphene Foam for Postplasma Catalytic Decomposition of Toluene with High Efficiency and Ultralow Pressure Drop. <i>Industrial & Description Research</i> , 2018,	3.9	3	
71	Experimental study of the wake characteristics of a two-blade horizontal axis wind turbine by time-resolved PIV. <i>Science China Technological Sciences</i> , 2017 , 60, 593-601	3.5	2	
70	Soot particle sizing based on analytical formula derived from laser-induced incandescence decay signals. <i>Applied Physics Letters</i> , 2017 , 110, 041903	3.4	2	
69	SO Electrocatalytic Oxidation Properties of Pt-Ru/C Bimetallic Catalysts with Different Nanostructures. <i>Langmuir</i> , 2020 , 36, 3111-3118	4	2	
68	The Relationship between Sinter Mix Composition and Flame Front Properties by a Novel Experimental Approach. <i>Combustion Science and Technology</i> , 2018 , 190, 721-739	1.5	2	
67	Catalyst Screening and Development for HI Decomposition in Sulfur-iodine Thermochemical Cycle for Hydrogen Production. <i>Chemistry Letters</i> , 2018 , 47, 700-703	1.7	2	
66	Verification and Validation of a Low-Mach-Number Large-Eddy Simulation Code against Manufactured Solutions and Experimental Results. <i>Energies</i> , 2018 , 11, 921	3.1	2	
65	Techno-economic analysis of novel power generation system based on coal partial gasification technology. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2019 , 14, e2377	1.3	2	
64	Quantum chemistry study on the oxidation of NO catalyzed by ZSM5 supported Mn/CoAl/Ce. <i>Journal of Theoretical and Computational Chemistry</i> , 2017 , 16, 1750044	1.8	2	
63	A novel power generation system based on the cascade utilization of coal: concept and preliminary experimental results. <i>Energy Sources, Part A: Recovery, Utilization and Environmental Effects</i> , 2017 , 39, 1955-1962	1.6	2	
62	LES investigation of swirl intensity effect on unconfined turbulent swirling premixed flame. <i>Science Bulletin</i> , 2014 , 59, 4550-4558		2	
61	Experimental Study on the Absorption of CO2 from Flue Gas by Aqueous Solutions of Methyldiethanolamine + Potassium Glycinate in Hollow Fiber Membrane Contactor 2010 ,		2	
60	Experimental Study on the Separation of CO2 from Flue Gas Using Hollow Fiber Membrane Contactors with Aqueous Solution of Potassium Glycinate 2009 ,		2	

59	Laser Diffraction Method Measurements of Particle-Gas Dispersion Effects in a Coaxial Jet. <i>Aerosol Science and Technology</i> , 1997 , 26, 447-458	3.4	2
58	Direct numerical simulation on the particle flow in the wake of circular cylinder. <i>Progress in Natural Science: Materials International</i> , 2003 , 13, 379-384	3.6	2
57	The research on gas diffusion through the coal ash layer during the coal combustion process. <i>Combustion Science and Technology</i> , 2002 , 174, 55-73	1.5	2
56	Kinetics and Mechanisms of Metal Chlorides Catalysis for Coal Char Gasification with CO2. <i>Catalysts</i> , 2020 , 10, 715	4	2
55	Catalytic Oxidation of Dimethyl Sulfide Over Commercial V-W/Ti Catalysts: Plasma Activation at Low Temperatures. <i>IEEE Transactions on Plasma Science</i> , 2016 , 44, 3379-3385	1.3	2
54	Optical and thermal performance of a novel solar particle receiver 2019,		1
53	Pyrolysis characteristics of low-rank coals based on double-gaussian distributed activation energy model. <i>Canadian Journal of Chemical Engineering</i> , 2019 , 97, 2642-2652	2.3	1
52	Experimental measurements and XCT based simulation of effective thermal conductivity of stacked ceramsites in molten-salt tank foundation. <i>Heat and Mass Transfer</i> , 2019 , 55, 3103-3115	2.2	1
51	Hierarchical, Vertically-Oriented Carbon Nanowall Foam Supercapacitor Using Room Temperature Ionic Liquid Mixture for AC Line Filtering with Ultrahigh Energy Density. <i>ChemElectroChem</i> , 2019 , 6, 212	23 ⁴ 2 ³ 12	3 ¹
50	Effect of carbonization temperature on the grindability of carbonaceous material produced from different coals. <i>Canadian Journal of Chemical Engineering</i> , 2019 , 97, 2653-2661	2.3	1
49	DC and Microwave Plasmas for Synthesis of Vertically Oriented Graphene. <i>IEEE Transactions on Plasma Science</i> , 2014 , 42, 2796-2797	1.3	1
48	A steam dried municipal solid waste gasification and melting process. <i>Frontiers of Environmental Science and Engineering in China</i> , 2011 , 5, 193-204		1
47	PARTICLE CONCENTRATION AND SIZE MEASUREMENTS IN TWO-PHASE TURBULENT COAXIAL JETS. <i>Chemical Engineering Communications</i> , 1997 , 156, 115-129	2.2	1
46	Research on low emission MSW gasification and melting system. Frontiers of Environmental Science and Engineering in China, 2007, 1, 498-503		1
45	Experimental study on low temperature thermal treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in fly ash. <i>Frontiers of Energy and Power Engineering in China</i> , 2007 , 1, 280	-284	1
44	Measurement of Three-Dimensional Temperature Distribution in an Absorbing, Emitting, and Anisotropically Scattering Medium. <i>AIP Conference Proceedings</i> , 2007 ,	Ο	1
43	Algebraic stress model with RNG Equation for simulating confined strongly swirling turbulent flows. <i>Journal of Thermal Science</i> , 2001 , 10, 14-19	1.9	1
42	NUMERICAL SIMULATION OF THE EFFECT OF VELOCITY RATIO ON THE FLOW CHARACTERISTICS IN A COAXIAL JET. <i>Chemical Engineering Communications</i> , 1996 , 147, 85-98	2.2	1

(2004-2020)

41	Influences of Coal Type and Particle Size on Soot Measurement by Laser-Induced Incandescence and Soot Formation Characteristics in Laminar Pulverized Coal Flames. <i>Energy & amp; Fuels</i> , 2020 , 34, 13740-13749	4.1	1
40	A002 DEVELOPMENT OF MULTI-POLLUTANTS CONTROL TECHNOLOGY FOR FLUE GAS FROM POWER PLANTS IN CHINA(Plenary Lecture). <i>The Proceedings of the International Conference on Power Engineering (ICOPE)</i> , 2009 , 2009.1, _1-91-14_		1
39	Investigation of LaMnO3 catalyst loaded on HZSM-5 zeolite for CO catalytic oxidation. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2021 , 16, e2630	1.3	1
38	Interactive Effects in Two-Droplets Combustion of RP-3 Kerosene under Sub-Atmospheric Pressure. <i>Processes</i> , 2021 , 9, 1229	2.9	1
37	Regulating thermochemical redox temperature via oxygen defect engineering for protection of solar molten salt receivers. <i>IScience</i> , 2021 , 24, 103039	6.1	1
36	Unexpected rise of atmospheric secondary aerosols from biomass burning during the COVID-19 lockdown period in Hangzhou, China <i>Atmospheric Environment</i> , 2022 , 278, 119076	5.3	1
35	Interfacial charge transport behavior and thermal profiles of vertically oriented graphene-bridged supercapacitors. <i>Physica Status Solidi (B): Basic Research</i> , 2017 , 254, 1600804	1.3	0
34	Reduced-order analysis of an oil-fuel furnace vibration and comparison with the finite element method. <i>JVC/Journal of Vibration and Control</i> , 2019 , 25, 298-309	2	O
33	An experimental investigation of a new method for protecting bends from erosion in gas-particle flows. <i>Journal of Thermal Science</i> , 2000 , 9, 158-162	1.9	0
32	Study on CO2 gasification properties of coal gasification wastewater slurry. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2021 , 16, e2617	1.3	O
31	Effect of coating structure of granulated quasi-fuel particles in iron ore sintering. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2021 , 16, e2629	1.3	O
30	Reliability of Constant Charge Method for Molecular Dynamics Simulations on EDLCs in Nanometer and Sub-Nanometer Spaces. <i>ChemElectroChem</i> , 2017 , 4, 2427-2427	4.3	
29	The spin-coating-based immobilization of ZnTPP-dyed cation exchange resin microbeads for reversible ammonia detection. <i>Analytical Methods</i> , 2019 , 11, 2155-2162	3.2	
28	Interfacial charge transport behavior and thermal profiles of vertically oriented graphene-bridged supercapacitors (Phys. Status Solidi B 6/2017). <i>Physica Status Solidi (B): Basic Research</i> , 2017 , 254, 17702	.3 ²³	
27	Research Progress in Sustainable Energy in ZJU. <i>Journal of Power and Energy Systems</i> , 2011 , 5, 112-118		
26	DNS study of swirling intensity effect on flow pattern of a circular jet. <i>Journal of Visualization</i> , 2010 , 13, 3-4	1.6	
25	Application of digital holography to circle flow bed boiler measurement. <i>Frontiers of Energy and Power Engineering in China</i> , 2007 , 1, 218-222		
24	Flow visualization of the turbulent jet by Direct numerical simulation. <i>Journal of Visualization</i> , 2004 , 7, 110-110	1.6	

23	Coherent structures of the particle-laden turbulent round jet at different reynolds number. <i>Journal of Visualization</i> , 2004 , 7, 177-177	1.6
22	Removal of NO x by radical injection. <i>Science Bulletin</i> , 2004 , 49, 1991-1995	
21	A new DPIV proceeding algorithm and its application in particle motion study in a rotary drum. <i>Journal of Thermal Science</i> , 2002 , 11, 186-192	1.9
20	Study on fluid flow characteristics in different load cases in tangentially fired furnaces. <i>Chemical Engineering Communications</i> , 2003 , 190, 1348-1370	2.2
19	DNS of the turbulence modulation by dispersed particles in compressible spatially developing two-phase jets. <i>Progress in Natural Science: Materials International</i> , 2004 , 14, 817-821	3.6
18	Direct numerical simulation of a particle-laden weak-shearing plane jet. <i>Progress in Natural Science: Materials International</i> , 2004 , 14, 247-256	3.6
17	Visualization of vortex shedding and particle dispersion in two-phase plate wake. <i>Journal of Visualization</i> , 2005 , 8, 3-3	1.6
16	Numerical simulation of swirling gas-solid two phase flow through a pipe expansion. <i>Journal of Thermal Science</i> , 2001 , 10, 38-45	1.9
15	A Modeling Study on Cellulose Particle Pyrolysis Under Fluidized-Bed Conditions1091-1106	
14	On a eulerian and lagrangian combined model in dense particle-laden riser flow. <i>Canadian Journal of Chemical Engineering</i> , 1999 , 77, 1113-1120	2.3
13	PREDICTION OF A GAS-PARTICLE TURBULENT JET WITH THE FLUCTUATION-SPECTRUM-RANDOM-TRAJECTORY MODEL. <i>Chemical Engineering Communications</i> , 1995 , 135, 101-112	2.2
12	NUMERICAL PREDICTION OF A RECTANGULAR TURBULENT JET IN A CROSS FLOW. <i>Chemical Engineering Communications</i> , 1992 , 117, 293-306	2.2
11	Generalized prediction and optimal operating parameters of PCDD/F emissions by explainable Bayesian support vector regression. <i>Waste Management</i> , 2021 , 135, 437-447	8.6
10	D306 EXPERIMENTS AND MATHEMATICAL MODEL ON FLUE GAS DESULFURIZATION OF CIRCULATING FLUIDIZED BED. <i>The Proceedings of the International Conference on Power Engineering (ICOPE)</i> , 2003 , 2003.3, _3-2573-261_	
9	D212 EXPERIMENTAL STUDY ON TANGENTIAL CIRCLE CHARACTERISTIC IN HIGH RATIO OF LENGTH AND WIDTH, HEXAGONAL ARRANGED UTILITY BURNER. <i>The Proceedings of the International Conference on Power Engineering (ICOPE)</i> , 2003 , 2003.2, _2-3192-323_	
8	E214 APPLICATION OF CWS COMBUSTION TECHNOLOGY TO POWER PLANTS IN GUANGDONG PROVINCE OF CHINA. <i>The Proceedings of the International Conference on Power Engineering (ICOPE)</i> , 2003, 2003.2, _2-4152-419_	
7	E211 STAGED SORBENT INJECTION UNDER AIR-STAGED COMBUSTION CONDITIONS FOR SO_2 REDUCTION IN A PULVERIZED COAL FIRED BOILER. <i>The Proceedings of the International Conference on Power Engineering (ICOPE)</i> , 2003 , 2003.2, _2-3992-402_	
6	S-2 POLLUTANTS FORMATION AND CONTROL DURING COAL AND WASTE COMBUSTION FOR POWER GENERATION. <i>The Proceedings of the International Conference on Power Engineering (ICOPE)</i> , 2003 , 2003.1, _1-91-16_	

LIST OF PUBLICATIONS

- Challenge of coal combustion and technology development for Multi-pollutant emission control.

 The Proceedings of the International Conference on Power Engineering (ICOPE), 2015, 2015.12, C1-C18
- E305 NUMERICAL SIMULATIONS ON THE EFFECT OF OVER-FIRE AIR TO THE COMBUSTION PERFORMANCE IN A 2950 T/H TANGENTIAL-FIRED BOILER(Boiler-1). *The Proceedings of the International Conference on Power Engineering (ICOPE)*, **2009**, 2009.3, _3-289_-3-292_
- D301 INVESTIGATION ON Hg^0 RE-EMISSION ACROSS A LAB-SCALE WFGD SYSTEM(Environment Protection-4). *The Proceedings of the International Conference on Power Engineering (ICOPE)*, **2009**, 2009.3, _3-191_-_3-194_
- E304 FLOW FIELD IN A MODEL OF A 2950 T/H TANGENTIAL-FIRED BOILER UNDER DIFFERENT CONDITIONS OF SEPARTED OVER-FIRE-AIR INJECTIONS(Boiler-1). *The Proceedings of the International Conference on Power Engineering (ICOPE)*, **2009**, 2009.3, _3-283_-3-288_
- Nonlinear Dynamic Characteristics of Turbulent Non-Premixed Acoustically Perturbed Swirling Flames. *Journal of Thermal Science*,1

1.9