Zhongkui Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8016718/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymer/bioactive glass nanocomposites for biomedical applications: A review. Composites Science and Technology, 2010, 70, 1764-1776.	3.8	451
2	Nano-composite of poly(-lactide) and surface grafted hydroxyapatite: Mechanical properties and biocompatibility. Biomaterials, 2005, 26, 6296-6304.	5.7	410
3	In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(l-lactide). Biomaterials, 2009, 30, 58-70.	5.7	245
4	Grafting polymerization of l-lactide on the surface of hydroxyapatite nano-crystals. Polymer, 2004, 45, 6699-6706.	1.8	211
5	Cancer exosomes induce tumor innervation. Nature Communications, 2018, 9, 4284.	5.8	169
6	Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles. Acta Biomaterialia, 2009, 5, 115-123.	4.1	150
7	Preparation and in vitro characterization of scaffolds of poly(l-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomaterialia, 2008, 4, 1297-1306.	4.1	148
8	Increased vascular smooth muscle cell stiffness: a novel mechanism for aortic stiffness in hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1281-H1287.	1.5	142
9	Electrospun poly(l-lactide)-grafted hydroxyapatite/poly(l-lactide) nanocomposite fibers. European Polymer Journal, 2007, 43, 3187-3196.	2.6	115
10	Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(l-lactide) composites. Acta Biomaterialia, 2008, 4, 1005-1015.	4.1	115
11	Study on crystalline morphology of poly(l-lactide)-poly(ethylene glycol) diblock copolymer. Polymer, 2004, 45, 5969-5977.	1.8	111
12	Augmented Vascular Smooth Muscle Cell Stiffness and Adhesion When Hypertension Is Superimposed on Aging. Hypertension, 2015, 65, 370-377.	1.3	109
13	RGD-Conjugated Copolymer Incorporated into Composite of Poly(lactide-co-glycotide) and Poly(l-lactide)-Grafted Nanohydroxyapatite for Bone Tissue Engineering. Biomacromolecules, 2011, 12, 2667-2680.	2.6	108
14	Preparation of bioactive glass ceramic nanoparticles by combination of sol–gel and coprecipitation method. Journal of Non-Crystalline Solids, 2009, 355, 368-372.	1.5	97
15	Formation of a Unique Crystal Morphology for the Poly(ethylene glycol)â^'Poly(Îμ-caprolactone) Diblock Copolymer. Biomacromolecules, 2006, 7, 252-258.	2.6	96
16	Poly(l-lactide)/starch blends compatibilized with poly(l-lactide)-g-starch copolymer. Carbohydrate Polymers, 2006, 65, 75-80.	5.1	96
17	Functionalization of PCL-3D electrospun nanofibrous scaffolds for improved BMP2-induced bone formation. Applied Materials Today, 2018, 10, 194-202.	2.3	96
18	The starch grafted poly(l-lactide) and the physical properties of its blending composites. Polymer, 2005, 46, 5723-5729.	1.8	87

ZHONGKUI HONG

#	Article	IF	CITATIONS
19	Composites of poly(lactide-co-glycolide) and the surface modified carbonated hydroxyapatite nanoparticles. Journal of Biomedical Materials Research - Part A, 2007, 81A, 515-522.	2.1	82
20	Temporal analysis of vascular smooth muscle cell elasticity and adhesion reveals oscillation waveforms that differ with aging. Aging Cell, 2012, 11, 741-750.	3.0	74
21	Surface-modified hydroxyapatite linked byL-lactic acid oligomer in the absence of catalyst. Journal of Polymer Science Part A, 2005, 43, 5177-5185.	2.5	66
22	Tailoring weight ratio of PCL/PLA in electrospun three-dimensional nanofibrous scaffolds and the effect on osteogenic differentiation of stem cells. Colloids and Surfaces B: Biointerfaces, 2018, 171, 31-39.	2.5	62
23	Coordination of fibronectin adhesion with contraction and relaxation in microvascular smooth muscle. Cardiovascular Research, 2012, 96, 73-80.	1.8	60
24	Electrospun nanofiber scaffold for vascular tissue engineering. Materials Science and Engineering C, 2021, 129, 112373.	3.8	59
25	Monoâ€dispersed bioactive glass nanospheres: Preparation and effects on biomechanics of mammalian cells. Journal of Biomedical Materials Research - Part A, 2010, 95A, 747-754.	2.1	57
26	Fabrication and Characterization of Pectin Hydrogel Nanofiber Scaffolds for Differentiation of Mesenchymal Stem Cells into Vascular Cells. ACS Biomaterials Science and Engineering, 2019, 5, 6511-6519.	2.6	51
27	Vasoactive agonists exert dynamic and coordinated effects on vascular smooth muscle cell elasticity, cytoskeletal remodelling and adhesion. Journal of Physiology, 2014, 592, 1249-1266.	1.3	50
28	Mechanical activation of angiotensin II type 1 receptors causes actin remodelling and myogenic responsiveness in skeletal muscle arterioles. Journal of Physiology, 2016, 594, 7027-7047.	1.3	49
29	Vascular Smooth Muscle Cell Stiffness and Adhesion to Collagen I Modified by Vasoactive Agonists. PLoS ONE, 2015, 10, e0119533.	1.1	39
30	Membrane cholesterol and substrate stiffness co-ordinate to induce the remodelling of the cytoskeleton and the alteration in the biomechanics of vascular smooth muscle cells. Cardiovascular Research, 2019, 115, 1369-1380.	1.8	39
31	Extracellular Matrix Proteins and Substrate Stiffness Synergistically Regulate Vascular Smooth Muscle Cell Migration and Cortical Cytoskeleton Organization. ACS Applied Bio Materials, 2020, 3, 2360-2369.	2.3	33
32	Novel Riceâ€shaped Bioactive Ceramic Nanoparticles. Advanced Engineering Materials, 2009, 11, B25.	1.6	31
33	Vascular extracellular matrix and fibroblasts-coculture directed differentiation of human mesenchymal stem cells toward smooth muscle-like cells for vascular tissue engineering. Materials Science and Engineering C, 2018, 93, 61-69.	3.8	29
34	Elastic Mineralized 3D Electrospun PCL Nanofibrous Scaffold for Drug Release and Bone Tissue Engineering. ACS Applied Bio Materials, 2021, 4, 3639-3648.	2.3	25
35	Spontaneous oscillation in cell adhesion and stiffness measured using atomic force microscopy. Scientific Reports, 2018, 8, 2899.	1.6	23
36	Gelatin-crosslinked pectin nanofiber mats allowing cell infiltration. Materials Science and Engineering C, 2020, 112, 110941.	3.8	23

ZHONGKUI HONG

#	Article	IF	CITATIONS
37	How cholesterol regulates endothelial biomechanics. Frontiers in Physiology, 2012, 3, 426.	1.3	22
38	Statinâ€mediated cholesterol depletion exerts coordinated effects on the alterations in rat vascular smooth muscle cell biomechanics and migration. Journal of Physiology, 2020, 598, 1505-1522.	1.3	22
39	Low doses of zeolitic imidazolate framework-8 nanoparticles alter the actin organization and contractility of vascular smooth muscle cells. Journal of Hazardous Materials, 2021, 414, 125514.	6.5	22
40	Lysophosphatidic acid induces integrin activation in vascular smooth muscle and alters arteriolar myogenic vasoconstriction. Frontiers in Physiology, 2014, 5, 413.	1.3	18
41	Vessel graft fabricated by the on-site differentiation of human mesenchymal stem cells towards vascular cells on vascular extracellular matrix scaffold under mechanical stimulation in a rotary bioreactor. Journal of Materials Chemistry B, 2019, 7, 2703-2713.	2.9	14
42	Temporal and molecular dynamics of human metastatic breast carcinoma cell adhesive interactions with human bone marrow endothelium analyzed by single-cell force spectroscopy. PLoS ONE, 2018, 13, e0204418.	1.1	9
43	Influence of membrane cholesterol and substrate elasticity on endothelial cell spreading behavior. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1994-2004.	2.1	8
44	The interplay of membrane cholesterol and substrate on vascular smooth muscle biomechanics. Current Topics in Membranes, 2020, 86, 279-299.	0.5	3
45	How Phosphatidylinositol 4,5-bisphosphate Regulates Membrane-Cytoskeleton Interaction in Endothelial Cells?. Biophysical Journal, 2009, 96, 395a.	0.2	1
46	On-Site Differentiation of Human Mesenchymal Stem Cells into Vascular Cells on Extracellular Matrix Scaffold Under Mechanical Stimulations for Vascular Tissue Engineering. Methods in Molecular Biology, 2022, 2375, 35-46.	0.4	1
47	Recent Developments in Bioactive Ceramic/Class: Preparation and Application in Tissue Engineering and Drug Delivery. Recent Patents on Materials Science, 2010, 3, 239-257.	0.5	0
48	Isolated Vascular Smooth Muscle Stiffness as a Common Mechanism to the Increased Aortic Stiffness of Aging and Hypertension. FASEB Journal, 2013, 27, lb687.	0.2	0
49	Calcium and its role in vascular smooth muscle cell cortical elasticity and adhesion. FASEB Journal, 2013, 27, lb700.	0.2	0