Kouki Hikosaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8016059/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The worldwide leaf economics spectrum. Nature, 2004, 428, 821-827.	13.7	6,489
2	Assessing the generality of global leaf trait relationships. New Phytologist, 2005, 166, 485-496.	3.5	1,704
3	A global metaâ€analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 2015, 18, 1406-1419.	3.0	768
4	Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynthesis Research, 2014, 119, 101-117.	1.6	756
5	Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 2005, 14, 411-421.	2.7	669
6	Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. Journal of Experimental Botany, 2006, 57, 291-302.	2.4	417
7	Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytologist, 2017, 214, 1447-1463.	3.5	412
8	Optimal stomatal behaviour around the world. Nature Climate Change, 2015, 5, 459-464.	8.1	397
9	Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant, Cell and Environment, 2004, 27, 1047-1054.	2.8	395
10	Interspecific difference in the photosynthesis?nitrogen relationship: patterns, physiological causes, and ecological importance. Journal of Plant Research, 2004, 117, 481-494.	1.2	375
11	A model of the acclimation of photosynthesis in the leaves of C3 plants to sun and shade with respect to nitrogen use. Plant, Cell and Environment, 1995, 18, 605-618.	2.8	365
12	Comparative ecophysiology of leaf and canopy photosynthesis. Plant, Cell and Environment, 1995, 18, 1111-1128.	2.8	359
13	Does the photosynthetic light-acclimation need change in leaf anatomy?. Plant, Cell and Environment, 2003, 26, 505-512.	2.8	313
14	Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant, Cell and Environment, 2005, 28, 916-927.	2.8	257
15	Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Functional Ecology, 2004, 18, 419-425.	1.7	250
16	Leaf Canopy as a Dynamic System: Ecophysiology and Optimality in Leaf Turnover. Annals of Botany, 2004, 95, 521-533.	1.4	229
17	Effects of leaf age, nitrogen nutrition and photon flux density on the distribution of nitrogen among leaves of a vine (Ipomoea tricolor Cav.) grown horizontally to avoid mutual shading of leaves. Oecologia, 1994, 97, 451-457.	0.9	219
18	Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytologist, 2019, 222, 768-784.	3.5	171

#	Article	IF	CITATIONS
19	Nitrogen Partitioning among Photosynthetic Components and its Consequence in Sun and Shade Plants. Functional Ecology, 1996, 10, 335.	1.7	168
20	The Excess Light Energy that is neither Utilized in Photosynthesis nor Dissipated by Photoprotective Mechanisms Determines the Rate of Photoinactivation in Photosystem II. Plant and Cell Physiology, 2003, 44, 318-325.	1.5	161
21	Phenotypic Plasticity in Photosynthetic Temperature Acclimation among Crop Species with Different Cold Tolerances Â. Plant Physiology, 2009, 152, 388-399.	2.3	155
22	Photosynthetic nitrogen-use efficiency in leaves of woody and herbaceous species. Functional Ecology, 1998, 12, 896-905.	1.7	135
23	Balancing carboxylation and regeneration of ribulose-1,5- bisphosphate in leaf photosynthesis: temperature acclimation of an evergreen tree, Quercus myrsinaefolia. Plant, Cell and Environment, 1999, 22, 841-849.	2.8	123
24	Effects of leaf age, nitrogen nutrition and photon flux density on the organization of the photosynthetic apparatus in leaves of a vine (Ipomoea tricolor Cav.) grown horizontally to avoid mutual shading of leaves. Planta, 1996, 198, 144.	1.6	115
25	The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity. Oecologia, 2009, 160, 443-451.	0.9	113
26	Leaf nitrogen distribution in relation to leaf age and photon flux density in dominant and subordinate plants in dense stands of a dicotyledonous herb. Oecologia, 1998, 113, 314-324.	0.9	103
27	A Model of Dynamics of Leaves and Nitrogen in a Plant Canopy: An Integration of Canopy Photosynthesis, Leaf Life Span, and Nitrogen Use Efficiency. American Naturalist, 2003, 162, 149-164.	1.0	101
28	Leaf angle as a strategy for light competition: Optimal and evolutionarily stable light-extinction coefficient within a leaf canopy. Ecoscience, 1997, 4, 501-507.	0.6	100
29	Seasonal change in the balance between capacities of RuBP carboxylation and RuBP regeneration affects CO2 response of photosynthesis in Polygonum cuspidatum. Journal of Experimental Botany, 2005, 56, 755-763.	2.4	97
30	Light acquisition and use by individuals competing in a dense stand of an annual herb, Xanthium canadense. Oecologia, 1999, 118, 388-396.	0.9	96
31	Global dependence of fieldâ€observed leaf area index in woody species on climate: a systematic review. Global Ecology and Biogeography, 2014, 23, 274-285.	2.7	89
32	Cold-Tolerant Crop Species Have Greater Temperature Homeostasis of Leaf Respiration and Photosynthesis Than Cold-Sensitive Species. Plant and Cell Physiology, 2009, 50, 203-215.	1.5	88
33	Modelling Optimal Temperature Acclimation of the Photosynthetic Apparatus in C3Plants with Respect to Nitrogen Use. Annals of Botany, 1997, 80, 721-730.	1.4	82
34	The balance between RuBP carboxylation and RuBP regeneration: a mechanism underlying the interspecific variation in acclimation of photosynthesis to seasonal change in temperature. Functional Plant Biology, 2005, 32, 903.	1.1	82
35	Leaf anatomy and light acclimation in woody seedlings after gap formation in a cool-temperate deciduous forest. Oecologia, 2006, 149, 571-582.	0.9	78
36	Optimal nitrogen distribution within a leaf canopy under direct and diffuse light. Plant, Cell and Environment, 2014, 37, 2077-2085.	2.8	78

#	Article	IF	CITATIONS
37	Plants in a crowded stand regulate their height growth so as to maintain similar heights to neighbours even when they have potential advantages in height growth. Annals of Botany, 2011, 108, 207-214.	1.4	70
38	Dividing the pie: A quantitative review on plant density responses. Plant, Cell and Environment, 2021, 44, 1072-1094.	2.8	67
39	Nitrogen Partitioning in the Photosynthetic Apparatus of Plantago asiatica Leaves Grown Under Different Temperature and Light Conditions: Similarities and Differences Between Temperature and Light Acclimation. Plant and Cell Physiology, 2005, 46, 1283-1290.	1.5	66
40	A meta-analysis of leaf nitrogen distribution within plant canopies. Annals of Botany, 2016, 118, 239-247.	1.4	66
41	Habitat filtering determines the functional niche occupancy of plant communities worldwide. Journal of Ecology, 2018, 106, 1001-1009.	1.9	66
42	Photosynthetic rates and partitioning of absorbed light energy in photoinhibited leaves. Physiologia Plantarum, 2004, 121, 699-708.	2.6	64
43	A Genome Scan for Genes Underlying Microgeographic-Scale Local Adaptation in a Wild Arabidopsis Species. PLoS Genetics, 2015, 11, e1005361.	1.5	63
44	Photosynthesis-nitrogen relationships in species at different altitudes on Mount Kinabalu, Malaysia. Ecological Research, 2002, 17, 305-313.	0.7	62
45	Light partitioning among species and species replacement in early successional grasslands. Journal of Vegetation Science, 2002, 13, 615-626.	1.1	61
46	Photosynthetic nitrogen-use efficiency in evergreen broad-leaved woody species coexisting in a warm-temperate forest. Tree Physiology, 2000, 20, 1249-1254.	1.4	59
47	Resource allocation to vegetative and reproductive growth in relation to mast seeding in Fagus crenata. Forest Ecology and Management, 2006, 229, 228-233.	1.4	59
48	Seasonal Changes in Temperature Dependence of Photosynthetic Rate in Rice Under a Free-air CO2 Enrichment. Annals of Botany, 2006, 97, 549-557.	1.4	58
49	Leaf-level nitrogen-use efficiency of canopy and understorey species in a beech forest. Functional Ecology, 2002, 16, 826-834.	1.7	54
50	Leaf lifespan and lifetime carbon balance of individual leaves in a stand of an annual herb, Xanthium canadense. New Phytologist, 2006, 172, 104-116.	3.5	51
51	Seasonal changes in photosynthesis, nitrogen content and nitrogen partitioning in Lindera umbellata leaves grown in high or low irradiance. Tree Physiology, 2006, 26, 1315-1323.	1.4	49
52	Seasonal changes in the temperature response of photosynthesis in canopy leaves of Quercus crispula in a cool-temperate forest. Tree Physiology, 2007, 27, 1035-1041.	1.4	49
53	Mechanisms underlying interspecific variation in photosynthetic capacity across wild plant species. Plant Biotechnology, 2010, 27, 223-229.	0.5	49
54	Leaf and canopy photosynthesis of C3 plants at elevated CO2 in relation to optimal partitioning of nitrogen among photosynthetic components: theoretical prediction. Ecological Modelling, 1998, 106, 247-259.	1.2	48

#	Article	IF	CITATIONS
55	Seasonal changes in light and temperature affect the balance between light harvesting and light utilisation components of photosynthesis in an evergreen understory shrub. Oecologia, 2005, 143, 501-508.	0.9	47
56	Does leaf photosynthesis adapt to CO ₂ â€enriched environments? An experiment on plants originating from three natural CO ₂ springs. New Phytologist, 2009, 182, 698-709.	3.5	45
57	Nitrogen uptake and use by competing individuals in a Xanthium canadense stand. Oecologia, 2001, 126, 174-181.	0.9	44
58	Effects of virus infection and growth irradiance on fitness components and photosynthetic properties of Eupatorium makinoi (Compositae). American Journal of Botany, 1997, 84, 823-829.	0.8	41
59	Does leaf shedding increase the wholeâ€plant carbon gain despite some nitrogen being lost with shedding?. New Phytologist, 2008, 178, 617-624.	3.5	41
60	Intraspecific variation in temperature dependence of gas exchange characteristics among <i>Plantago asiatica</i> ecotypes from different temperature regimes. New Phytologist, 2007, 176, 356-364.	3.5	39
61	Plant responses to elevated CO2 concentration at different scales: leaf, whole plant, canopy, and population. Ecological Research, 2005, 20, 243-253.	0.7	38
62	Biomass Allocation and Leaf Chemical Defence in Defoliated Seedlings of Quercus serrata with Respect to Carbon–Nitrogen Balance. Annals of Botany, 2005, 95, 1025-1032.	1.4	38
63	Nitrogen resorption and protein degradation during leaf senescence in Chenopodium album grown in different light and nitrogen conditions. Functional Plant Biology, 2007, 34, 409.	1.1	36
64	Optimality of nitrogen distribution among leaves in plant canopies. Journal of Plant Research, 2016, 129, 299-311.	1.2	36
65	Elevated CO ₂ concentration, nitrogen use, and seed production in annual plants. Global Change Biology, 2007, 13, 2161-2170.	4.2	35
66	Effects of elevated CO2 concentration on seed production in C3 annual plants. Journal of Experimental Botany, 2011, 62, 1523-1530.	2.4	35
67	Contribution of Photosynthetic Electron Transport, Heat Dissipation, and Recovery of Photoinactivated Photosystem II to Photoprotection at Different Temperatures in Chenopodium album Leaves. Plant and Cell Physiology, 2003, 44, 828-835.	1.5	34
68	Nitrogen resorption from leaves under different growth irradiance in three deciduous woody species. Plant Ecology, 2005, 178, 29-37.	0.7	34
69	The leaf anatomy of a broadâ€ l eaved evergreen allows an increase in leaf nitrogen content in winter. Physiologia Plantarum, 2009, 136, 299-309.	2.6	34
70	Effects of seasonal change and experimental warming on the temperature dependence of photosynthesis in the canopy leaves of <i>Quercus serrata</i> . Tree Physiology, 2016, 36, 1283-1295.	1.4	34
71	Phenotypic and genetic differences in a perennial herb across a natural gradient of CO2 concentration. Oecologia, 2011, 165, 809-818.	0.9	33
72	Optimal use of leaf nitrogen explains seasonal changes in leaf nitrogen content of an understorey evergreen shrub. Annals of Botany, 2011, 108, 529-536.	1.4	33

#	Article	IF	CITATIONS
73	Vulnerability of moorland plant communities to environmental change: consequences of realistic species loss on functional diversity. Journal of Applied Ecology, 2014, 51, 299-308.	1.9	33
74	Light-acquisition and use of individuals as influenced by elevated CO2 in even-aged monospecific stands of Chenopodium album. Functional Ecology, 2003, 17, 786-795.	1.7	32
75	A paradox of leaf-trait convergence: why is leaf nitrogen concentration higher in species with higher photosynthetic capacity?. Journal of Plant Research, 2009, 122, 245-251.	1.2	32
76	Effect of elevated CO2 levels on leaf starch, nitrogen and photosynthesis of plants growing at three natural CO2 springs in Japan. Ecological Research, 2007, 22, 475-484.	0.7	31
77	Costs and benefits of photosynthetic light acclimation by tree seedlings in response to gap formation. Oecologia, 2008, 155, 665-675.	0.9	31
78	Increase in Leaf Mass Per Area Benefits Plant Growth at Elevated CO2 Concentration. Annals of Botany, 2003, 91, 905-914.	1.4	29
79	Light interception in species with different functional groups coexisting in moorland plant communities. Oecologia, 2010, 164, 591-599.	0.9	29
80	Photoinactivation and recovery of photosystem II in Chenopodium album leaves grown at different levels of irradiance and nitrogen availability. Functional Plant Biology, 2002, 29, 787.	1.1	28
81	Is UVâ€induced DNA damage greater at higher elevation?. American Journal of Botany, 2014, 101, 796-802.	0.8	27
82	Homeostasis of the temperature sensitivity of respiration over a range of growth temperatures indicated by a modified Arrhenius model. New Phytologist, 2015, 207, 34-42.	3.5	27
83	Physiological validation of photochemical reflectance index (PRI) as a photosynthetic parameter using Arabidopsis thaliana mutants. Biochemical and Biophysical Research Communications, 2018, 498, 52-57.	1.0	27
84	Variations in leaf economics spectrum traits for an evergreen coniferous species: Tree size dominates over environment factors. Functional Ecology, 2020, 34, 458-467.	1.7	27
85	Effects of atmospheric CO2 concentration, irradiance, and soil nitrogen availability on leaf photosynthetic traits of Polygonum sachalinense around natural CO2 springs in northern Japan. Oecologia, 2010, 164, 41-52.	0.9	24
86	An evolutionary game of leaf dynamics and its consequences for canopy structure. Functional Ecology, 2012, 26, 1024-1032.	1.7	24
87	Modeling Canopy Photosynthesis. Advances in Photosynthesis and Respiration, 2016, , 239-268.	1.0	24
88	Reproductive allocation of an annual, Xanthium canadense , at an elevated carbon dioxide concentration. Oecologia, 2003, 137, 1-9.	0.9	23
89	Not only light quality but also mechanical stimuli are involved in height convergence in crowded <i>Chenopodium album</i> stands. New Phytologist, 2012, 195, 803-811.	3.5	23
90	Nestedness and nicheâ€based species loss in moorland plant communities. Oikos, 2012, 121, 1783-1790.	1.2	23

#	Article	IF	CITATIONS
91	Dynamics of leaf area and nitrogen in the canopy of an annual herb, Xanthium canadense. Oecologia, 2005, 143, 517-526.	0.9	22
92	Relationships Between Photosynthetic Activity and Silica Accumulation with Ages of Leaf in Sasa veitchii (Poaceae, Bambusoideae). Annals of Botany, 2008, 101, 463-468.	1.4	22
93	The effect of interspecific variation in photosynthetic plasticity on 4-year growth rate and 8-year survival of understorey tree seedlings in response to gap formations in a cool-temperate deciduous forest. Tree Physiology, 2017, 37, 1113-1127.	1.4	22
94	Intraspecific variations in leaf traits, productivity and resource use efficiencies in the dominant species of subalpine evergreen coniferous and deciduous broadâ€leaved forests along the altitudinal gradient. Journal of Ecology, 2021, 109, 1804-1818.	1.9	22
95	Leaf discs floated on water are different from intact leaves in photosynthesis and photoinhibition. Photosynthesis Research, 2002, 72, 65-70.	1.6	21
96	Functional differentiation in UV-B-induced DNA damage and growth inhibition between highland and lowland ecotypes of two Arabidopsis species. Environmental and Experimental Botany, 2016, 131, 110-119.	2.0	21
97	A simple formulation of interaction between individuals competing for light in a monospecific stand. Functional Ecology, 2001, 15, 642-646.	1.7	19
98	Modeling leaf CO ₂ assimilation and Photosystem II photochemistry from chlorophyll fluorescence and the photochemical reflectance index. Plant, Cell and Environment, 2019, 42, 730-739.	2.8	19
99	Linking remote sensing parameters to CO2 assimilation rates at a leaf scale. Journal of Plant Research, 2021, 134, 695-711.	1.2	19
100	Photosynthesis, chlorophyll fluorescence and photochemical reflectance index in photoinhibited leaves. Functional Plant Biology, 2021, 48, 815-826.	1.1	19
101	Diversity partitioning of moorland plant communities across hierarchical spatial scales. Biodiversity and Conservation, 2012, 21, 1577-1588.	1.2	17
102	Modeling Leaf Gas Exchange. Advances in Photosynthesis and Respiration, 2016, , 61-100.	1.0	17
103	Effects of elevated CO2 on the size structure in even-aged monospecific stands of Chenopodium album. Global Change Biology, 2003, 9, 619-629.	4.2	16
104	Reproductive yield of individuals competing for light in a dense stand of an annual, Xanthium canadense. Oecologia, 2008, 157, 185-195.	0.9	16
105	Nitrogen Distribution in Leaf Canopies of High‥ielding Rice Cultivar Takanari. Crop Science, 2017, 57, 2080-2088.	0.8	16
106	Cost—benefit relationships in fronds emerging at different times in a deciduous fern, Pteridium aquilinum. Canadian Journal of Botany, 2004, 82, 521-527.	1.2	15
107	Needle traits of an evergreen, coniferous shrub growing at windâ€exposed and protected sites in a mountain region: does <i>Pinus pumila</i> produce needles with greater mass per area under windâ€stress conditions?. Plant Biology, 2009, 11, 94-100.	1.8	15
108	Variations in Species Composition of Moorland Plant Communities Along Environmental Gradients Within a Subalpine Zone in Northern Japan. Wetlands, 2013, 33, 269-277.	0.7	14

#	Article	IF	CITATIONS
109	Seasonal change in light partitioning among coexisting species of different functional groups along elevation gradient in subalpine moorlands. New Phytologist, 2014, 204, 913-923.	3.5	14
110	Leafâ€ŧrait responses to environmental gradients in moorland communities: contribution of intraspecific variation, species replacement and functional group replacement. Ecological Research, 2014, 29, 607-617.	0.7	14
111	Ultraviolet-B-induced DNA damage and ultraviolet-B tolerance mechanisms in species with different functional groups coexisting in subalpine moorlands. Oecologia, 2016, 181, 1069-1082.	0.9	14
112	Mutant selection in the self-incompatible plant radish (<i>Raphanus sativus</i> L.) Tj ETQq0 0 0 rgBT	/Overlock 0.9	10 Tf 50 622 14
113	Corrected photochemical reflectance index (PRI) is an effective tool for detecting environmental stresses in agricultural crops under light conditions. Journal of Plant Research, 2021, 134, 683-694.	1.2	14
114	Interactions between elevated CO2 and N2-fixation determine soybean yield—a test using a non-nodulated mutant. Plant and Soil, 2010, 330, 163-172.	1.8	13
115	Which plant trait explains the variations in relative growth rate and its response to elevated carbon dioxide concentration among Arabidopsis thaliana ecotypes derived from a variety of habitats?. Oecologia, 2016, 180, 865-876.	0.9	13
116	Environmental dependence of population dynamics and height growth of a subalpine conifer across its vertical distribution: an approach using high-resolution aerial photographs. Global Change Biology, 2011, 17, 3431-3438.	4.2	12
117	Why does <i>Viola hondoensis</i> (Violaceae) shed its winter leaves in spring?. American Journal of Botany, 2010, 97, 1944-1950.	0.8	11
118	<i>Polygonum sachalinense</i> alters the balance between capacities of regeneration and carboxylation of ribuloseâ€1,5â€bisphosphate in response to growth CO ₂ increment but not the nitrogen allocation within the photosynthetic apparatus. Physiologia Plantarum, 2012, 146, 404-412.	2.6	10
119	Effects of elevated CO2 on leaf area dynamics in nodulating and non-nodulating soybean stands. Plant and Soil, 2013, 373, 627-639.	1.8	9
120	Limitation in the Photosynthetic Acclimation to High Temperature in Canopy Leaves of Quercus serrata. Frontiers in Forests and Global Change, 2019, 2, .	1.0	9
121	The latitudinal and altitudinal variations in the biochemical mechanisms of temperature dependence of photosynthesis within Fallopia japonica. Environmental and Experimental Botany, 2021, 181, 104248.	2.0	9
122	The role of biomass allocation between lamina and petioles in a game of light competition in a dense stand of an annual plant. Annals of Botany, 2018, 121, 1055-1064.	1.4	8
123	New year's greetings 2018 from the Journal of Plant Research. Journal of Plant Research, 2018, 131, 1-1.	1.2	8
124	Estimating leaf photosynthesis of C3 plants grown under different environments from pigment index, photochemical reflectance index, and chlorophyll fluorescence. Photosynthesis Research, 2021, 148, 33-46.	1.6	8
125	Leaf density and chemical composition explain variation in leaf mass area with spectral composition among 11 widespread forbs in a common garden. Physiologia Plantarum, 2021, 173, 698-708.	2.6	8
126	Respiration and Reproductive Effort in Xanthium canadense. Annals of Botany, 2005, 96, 81-89.	1.4	6

#	Article	IF	CITATIONS
127	Carbon balance in a monospecific stand of an annual herb Chenopodium album at an elevated CO2 concentration. Plant Ecology, 2009, 203, 33-44.	0.7	6
128	Dependence of functional traits related to growth rates and their CO2 response on multiple habitat climate factors across Arabidopsis thaliana populations. Journal of Plant Research, 2018, 131, 987-999.	1.2	6
129	Plasticity of functional traits and optimality of biomass allocation in elevational ecotypes of Arabidopsis halleri grown at different soil nutrient availabilities. Journal of Plant Research, 2019, 132, 237-249.	1.2	6
130	Pinus pumila Photosynthesis Is Suppressed by Water Stress in a Wind-Exposed Mountain Site. Arctic, Antarctic, and Alpine Research, 2013, 45, 229-237.	0.4	5
131	Nitrogen resorption in senescing leaf blades of rice exposed to free-air CO2 enrichment (FACE) under different N fertilization levels. Plant and Soil, 2017, 418, 231-240.	1.8	5
132	Potential extinction debt due to habitat loss and fragmentation in subalpine moorland ecosystems. Plant Ecology, 2021, 222, 445-457.	0.7	5
133	Plant responses to elevated CO2 concentration at different scales: leaf, whole plant, canopy, and population. , 2005, , 3-13.		4
134	Plant size, environmental factors and functional traits jointly shape the stem radius growth rate in an evergreen coniferous species across ontogenetic stages. Journal of Plant Ecology, 2021, 14, 257-269.	1.2	4
135	Imaging, screening and remote sensing of photosynthetic activity and stress responses. Journal of Plant Research, 2021, 134, 649-651.	1.2	4
136	Light partitioning among species and species replacement in early successional grasslands. , 2002, 13, 615.		4
137	Enhanced growth rate under elevated CO2 conditions was observed for transgenic lines of genes identified by intraspecific variation analyses in Arabidopsis thaliana. Plant Molecular Biology, 2022, 110, 333-345.	2.0	4
138	Decadesâ€long effects of high CO ₂ concentration on soil nitrogen dynamics at a natural CO ₂ spring. Ecological Research, 2017, 32, 215-225.	0.7	3
139	Functional shifts in leaves of woody invaders of deciduous forests between their home and away ranges. Tree Physiology, 2019, 39, 1551-1560.	1.4	3
140	With gratitude from the Editor-in-Chief of the Journal of Plant Research. Journal of Plant Research, 2021, 134, 1-2.	1.2	3
141	Temperature-related cline in the root mass fraction in East Asian wild radish along the Japanese archipelago. Breeding Science, 2020, 70, 321-330.	0.9	3
142	Plant–plant interactions mediate the plastic and genotypic response of <i>Plantago asiatica</i> to CO ₂ : an experiment with plant populations from naturally high CO ₂ areas. Annals of Botany, 2016, 117, 1197-1207.	1.4	2
143	Greetings from the new Editor-in-Chief. Journal of Plant Research, 2017, 130, 417-418.	1.2	2
144	Resource Allocation and Trade-Offs in Carbon Gain of Leaves Under Changing Environment. Plant Ecophysiology, 2014, , 1-24.	1.5	2

#	Article	IF	CITATIONS
145	Influences of Climate Change on the Distribution and Population Dynamics of Subalpine Coniferous Forest in the Hakkoda Mountains, Northern Japan. Structure and Function of Mountain Ecosystems in Japan, 2016, , 1-15.	0.1	1
146	2017 Awards in the Journal of Plant Research. Journal of Plant Research, 2017, 130, 951-952.	1.2	1
147	2018 Awards in the Journal of Plant Research. Journal of Plant Research, 2018, 131, 725-726.	1.2	1
148	Photosynthetic and Photosynthesis-Related Responses of Japanese Native Trees to CO2: Results from Phytotrons, Open-Top Chambers, Natural CO2 Springs, and Free-Air CO2 Enrichment. Advances in Photosynthesis and Respiration, 2018, , 425-449.	1.0	1
149	New year's greetings 2019 from the Journal of Plant Research. Journal of Plant Research, 2019, 132, 1-2.	1.2	1
150	2019 Awards in the Journal of Plant Research. Journal of Plant Research, 2019, 132, 459-460.	1.2	1
151	2020 Awards in the Journal of Plant Research. Journal of Plant Research, 2020, 133, 609-610.	1.2	1
152	Terrestrial Ecosystems in Monsoon Asia: Scaling up from Shoot Module to Watershed. , 2007, , 285-296.		1
153	Trait-Based Approaches for Understanding Species Niche, Coexistence, and Functional Diversity in Subalpine Moorlands. Structure and Function of Mountain Ecosystems in Japan, 2016, , 17-40.	0.1	0
154	New Year's greetings 2020 from the Journal of Plant Research. Journal of Plant Research, 2020, 133, 1-2.	1.2	0