Alessandra Mortellaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8015989/publications.pdf

Version: 2024-02-01

172207 155451 4,057 57 29 55 citations g-index h-index papers 59 59 59 6638 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Correction of ADA-SCID by Stem Cell Gene Therapy Combined with Nonmyeloablative Conditioning. Science, 2002, 296, 2410-2413.	6.0	1,081
2	Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nature Communications, 2015, 6, 8761.	5.8	271
3	Inflammasome-dependent IL- $1\hat{l}^2$ release depends upon membrane permeabilisation. Cell Death and Differentiation, 2016, 23, 1219-1231.	5.0	214
4	Immune reconstitution in ADA-SCID after PBL gene therapy and discontinuation of enzyme replacement. Nature Medicine, 2002, 8, 423-425.	15.2	205
5	Cutting Edge: The NLRP3 Inflammasome Links Complement-Mediated Inflammation and IL- $1\hat{l}^2$ Release. Journal of Immunology, 2013, 191, 1006-1010.	0.4	173
6	Probing Host Pathogen Cross-Talk by Transcriptional Profiling of Both Mycobacterium tuberculosis and Infected Human Dendritic Cells and Macrophages. PLoS ONE, 2008, 3, e1403.	1.1	172
7	CD80 and CD86 Differentially Regulate Mechanical Interactions of T-Cells with Antigen-Presenting Dendritic Cells and B-Cells. PLoS ONE, 2012, 7, e45185.	1.1	118
8	A unique role for p53 in the regulation of M2 macrophage polarization. Cell Death and Differentiation, 2015, 22, 1081-1093.	5.0	118
9	The NLRP3 Inflammasome May Contribute to Pathologic Neovascularization in the Advanced Stages of Diabetic Retinopathy. Scientific Reports, 2018, 8, 2847.	1.6	105
10	The inflammasomes in health and disease: from genetics to molecular mechanisms of autoinflammation and beyond. Cellular and Molecular Immunology, 2011, 8, 135-145.	4.8	91
11	CD103+ Dendritic Cells Control Th17 Cell Function in the Lung. Cell Reports, 2015, 12, 1789-1801.	2.9	89
12	The controversial relationship between NLRP3, alum, danger signals and the nextâ€generation adjuvants. European Journal of Immunology, 2010, 40, 638-642.	1.6	88
13	Ex vivo gene therapy with lentiviral vectors rescues adenosine deaminase (ADA)–deficient mice and corrects their immune and metabolic defects. Blood, 2006, 108, 2979-2988.	0.6	76
14	Uric Acid-Driven Th17 Differentiation Requires Inflammasome-Derived IL-1 and IL-18. Journal of Immunology, 2011, 187, 5842-5850.	0.4	75
15	Caspaseâ€11: The driving factor for noncanonical inflammasomes. European Journal of Immunology, 2013, 43, 2240-2245.	1.6	66
16	GM-CSF–Licensed CD11b+ Lung Dendritic Cells Orchestrate Th2 Immunity to ⟨i⟩Blomia tropicalis⟨/i⟩. Journal of Immunology, 2014, 193, 496-509.	0.4	63
17	The rhapsody of NLRPs: master players of inflammation … and a lot more. Immunologic Research, 2012, 53, 78-90.	1.3	62
18	Assessment of thymic output in common variable immunodeficiency patients by evaluation of T cell receptor excision circles. Clinical and Experimental Immunology, 2002, 129, 346-353.	1.1	59

#	Article	IF	Citations
19	<scp>NLRPs</scp> , microbiota, and gut homeostasis: unravelling the connection. Journal of Pathology, 2014, 233, 321-330.	2.1	58
20	C5a Regulates IL- $1\hat{l}^2$ Production and Leukocyte Recruitment in a Murine Model of Monosodium Urate Crystal-Induced Peritonitis. Frontiers in Pharmacology, 2017, 8, 10.	1.6	53
21	The <scp>NLRP</scp> 3 inflammasome affects <scp>DNA</scp> damage responses after oxidative and genotoxic stress in dendritic cells. European Journal of Immunology, 2013, 43, 2126-2137.	1.6	52
22	The Nod1, Nod2, and Rip2 Axis Contributes to Host Immune Defense against Intracellular Acinetobacter baumannii Infection. Infection and Immunity, 2014, 82, 1112-1122.	1.0	51
23	Mechanical Interactions between Dendritic Cells and T Cells Correlate with T Cell Responsiveness. Journal of Immunology, 2011, 187, 258-265.	0.4	49
24	A novel human anti-interleukin- $1\hat{l}^2$ neutralizing monoclonal antibody showing in vivo efficacy. MAbs, 2014, 6, 764-772.	2.6	47
25	NLRP3 inflammasome pathway has a critical role in the host immunity against clinically relevant Acinetobacter baumannii pulmonary infection. Mucosal Immunology, 2018, 11, 257-272.	2.7	47
26	Update on Clinical ExÂVivo Hematopoietic Stem Cell Gene Therapy for Inherited Monogenic Diseases. Molecular Therapy, 2021, 29, 489-504.	3.7	46
27	Novel perspectives on non-canonical inflammasome activation. ImmunoTargets and Therapy, 2015, 4, 131.	2.7	39
28	Calcineurin/NFAT signalling inhibits myeloid haematopoiesis. EMBO Molecular Medicine, 2012, 4, 269-282.	3.3	35
29	Salmonella typhimurium-induced IL-1 release from primary human monocytes requires NLRP3 and can occur in the absence of pyroptosis. Scientific Reports, 2017, 7, 6861.	1.6	30
30	The Syk–NFAT–IL-2 Pathway in Dendritic Cells Is Required for Optimal Sterile Immunity Elicited by Alum Adjuvants. Journal of Immunology, 2017, 198, 196-204.	0.4	28
31	E3 Ubiquitin ligase ZNRF4 negatively regulates NOD2 signalling and induces tolerance to MDP. Nature Communications, 2017, 8, 15865.	5.8	26
32	Calcineurin-mediated IL-2 production by CD11chighMHCII+ myeloid cells is crucial for intestinal immune homeostasis. Nature Communications, 2018, 9, 1102.	5.8	26
33	Synergism between Curdlan and GM-CSF Confers a Strong Inflammatory Signature to Dendritic Cells. Journal of Immunology, 2012, 188, 1789-1798.	0.4	25
34	Synergism of NOD2 and NLRP3 activators promotes a unique transcriptional profile in murine dendritic cells. Journal of Leukocyte Biology, 2010, 88, 1207-1216.	1.5	24
35	Genome-wide analysis of the genetic regulation of gene expression in human neutrophils. Nature Communications, 2015, 6, 7971.	5.8	23
36	Tyrosine Dephosphorylation of ASC Modulates the Activation of the NLRP3 and AIM2 Inflammasomes. Frontiers in Immunology, 2019, 10, 1556.	2.2	23

#	Article	IF	Citations
37	Spotlight on mycobacteria and dendritic cells: will novel targets to fight tuberculosis emerge?. EMBO Molecular Medicine, 2009, 1, 19-29.	3.3	22
38	Nod2 is required for the early innate immune clearance of Acinetobacter baumannii from the lungs. Scientific Reports, 2017, 7, 17429.	1.6	22
39	NLRP10 Enhances CD4+ T-Cell-Mediated IFN \hat{I}^3 Response via Regulation of Dendritic Cell-Derived IL-12 Release. Frontiers in Immunology, 2017, 8, 1462.	2.2	21
40	From vaccine practice to vaccine science: the contribution of human immunology to the prevention of infectious disease. Immunology and Cell Biology, 2011, 89, 332-339.	1.0	20
41	Lentiviral correction of enzymatic activity restrains macrophage inflammation in adenosine deaminase 2 deficiency. Blood Advances, 2021, 5, 3174-3187.	2.5	18
42	Hematopoietic Tumors in a Mouse Model of X-linked Chronic Granulomatous Disease after Lentiviral Vector-Mediated Gene Therapy. Molecular Therapy, 2021, 29, 86-102.	3.7	17
43	The Inflammasome Adaptor ASC Intrinsically Limits CD4+ T-Cell Proliferation to Help Maintain Intestinal Homeostasis. Frontiers in Immunology, 2019, 10, 1566.	2.2	15
44	Targeting Glycolysis in Macrophages Confers Protection Against Pancreatic Ductal Adenocarcinoma. International Journal of Molecular Sciences, 2021, 22, 6350.	1.8	15
45	Gasdermins: New Therapeutic Targets in Host Defense, Inflammatory Diseases, and Cancer. Frontiers in Immunology, $0,13,.$	2.2	15
46	Inhibition of NLRP3 inflammasome activation by cell-permeable stapled peptides. Scientific Reports, 2019, 9, 4913.	1.6	14
47	Continuous time Bayesian networks identify Prdm1 as a negative regulator of TH17 cell differentiation in humans. Scientific Reports, 2016, 6, 23128.	1.6	12
48	The need to identify myeloid dendritic cell progenitors in human blood. Trends in Immunology, 2010, 31, 18-23.	2.9	11
49	Calcineurin B in CD4+ T Cells Prevents Autoimmune Colitis by Negatively Regulating the JAK/STAT Pathway. Frontiers in Immunology, 2018, 9, 261.	2.2	10
50	Tyrosine kinases: the molecular switch for inflammasome activation. Cellular and Molecular Immunology, 2014, 11, 129-131.	4.8	9
51	Generation of Murine Growth Factor-Dependent Long-Term Dendritic Cell Lines to Investigate Host-Parasite Interactions. Methods in Molecular Biology, 2009, 531, 17-27.	0.4	9
52	Dendritic cells as sensors of environmental perturbations. Microbes and Infection, 2008, 10, 990-994.	1.0	7
53	NLRC4 gets out of control. Nature Genetics, 2014, 46, 1048-1049.	9.4	5
54	T cells and monocytes: A dangerous liaison in adenosine deaminase 2 deficiency. Journal of Leukocyte Biology, 2022, 111, 297-299.	1.5	5

#	Article	IF	CITATIONS
55	189. Cytokine, 2014, 70, 73-74.	1.4	1
56	Investigating IL- $\hat{1}^2$ Secretion Using Real-Time Single-Cell Imaging. Methods in Molecular Biology, 2016, 1417, 75-88.	0.4	0
57	Dendritic Cells and Their Tissue Microenvironment during Exposure to Pathogens. , 0, , 51-68.		O