Ye Guangying

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8015919/publications.pdf

Version: 2024-02-01

45 papers 8,154 citations

31 h-index

147801

233421 45 g-index

45 all docs

45 docs citations

45 times ranked

8243 citing authors

#	Article	IF	CITATIONS
1	A review on g-C 3 N 4 -based photocatalysts. Applied Surface Science, 2017, 391, 72-123.	6.1	2,318
2	Graphene in Photocatalysis: A Review. Small, 2016, 12, 6640-6696.	10.0	836
3	Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chinese Journal of Catalysis, 2015, 36, 2049-2070.	14.0	458
4	Graphene-based heterojunction photocatalysts. Applied Surface Science, 2018, 430, 53-107.	6.1	386
5	Constructing Multifunctional Metallic Ni Interface Layers in the g-C ₃ N ₄ Nanosheets/Amorphous NiS Heterojunctions for Efficient Photocatalytic H ₂ Generation. ACS Applied Materials & Diterfaces, 2017, 9, 14031-14042.	8.0	319
6	Constructing 2D layered hybrid CdS nanosheets/MoS 2 heterojunctions for enhanced visible-light photocatalytic H 2 generation. Applied Surface Science, 2017, 391, 580-591.	6.1	284
7	Noble-metal-free Ni3C cocatalysts decorated CdS nanosheets for high-efficiency visible-light-driven photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2018, 227, 218-228.	20.2	248
8	Bifunctional Cu ₃ P Decorated g-C ₃ N ₄ Nanosheets as a Highly Active and Robust Visible-Light Photocatalyst for H ₂ Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 4026-4036.	6.7	243
9	Multi-functional Ni ₃ C cocatalyst/g-C ₃ N ₄ nanoheterojunctions for robust photocatalytic H ₂ evolution under visible light. Journal of Materials Chemistry A, 2018, 6, 13110-13122.	10.3	241
10	Ni-based photocatalytic H2-production cocatalysts2. Chinese Journal of Catalysis, 2019, 40, 240-288.	14.0	239
11	Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nansheets/WO3 nanorods nanocomposites loaded with Ni(OH) cocatalysts. Chinese Journal of Catalysis, 2017, 38, 240-252.	14.0	237
12	Fabricating the Robust g-C ₃ N ₄ Nanosheets/Carbons/NiS Multiple Heterojunctions for Enhanced Photocatalytic H ₂ Generation: An Insight into the Trifunctional Roles of Nanocarbons. ACS Sustainable Chemistry and Engineering, 2017, 5, 2224-2236.	6.7	214
13	In situ one-pot fabrication of g-C 3 N 4 nanosheets/NiS cocatalyst heterojunction with intimate interfaces for efficient visible light photocatalytic H 2 generation. Applied Surface Science, 2018, 430, 208-217.	6.1	204
14	Enhanced Solar Fuel H ₂ Generation over g-C ₃ N ₄ Nanosheet Photocatalysts by the Synergetic Effect of Noble Metal-Free Co ₂ P Cocatalyst and the Environmental Phosphorylation Strategy. ACS Sustainable Chemistry and Engineering, 2018, 6, 816-826.	6.7	201
15	Surface and interface engineering of hierarchical photocatalysts. Applied Surface Science, 2019, 471, 43-87.	6.1	170
16	Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels. Renewable and Sustainable Energy Reviews, 2018, 82, 3762-3797.	16.4	164
17	Preparation of a novel bio-adsorbent of sodium alginate grafted polyacrylamide/graphene oxide hydrogel for the adsorption of heavy metal ion. Science of the Total Environment, 2020, 744, 140653.	8.0	150
18	Preparation of acrylamide/acrylic acid cellulose hydrogels for the adsorption of heavy metal ions. Carbohydrate Polymers, 2019, 224, 115022.	10.2	144

#	Article	IF	Citations
19	Improved visible-light photocatalytic H2 generation over CdS nanosheets decorated by NiS2 and metallic carbon black as dual earth-abundant cocatalysts. Chinese Journal of Catalysis, 2017, 38, 1970-1980.	14.0	124
20	Earth-abundant WC nanoparticles as an active noble-metal-free co-catalyst for the highly boosted photocatalytic H ₂ production over g-C ₃ N ₄ nanosheets under visible light. Catalysis Science and Technology, 2017, 7, 1193-1202.	4.1	114
21	Markedly enhanced visible-light photocatalytic H ₂ generation over g-C ₃ N ₄ nanosheets decorated by robust nickel phosphide (Ni ₁₂ P ₅) cocatalysts. Dalton Transactions, 2017, 46, 1794-1802.	3.3	111
22	Efficient visible-light photocatalytic H ₂ evolution over metal-free g-C ₃ N ₄ co-modified with robust acetylene black and Ni(OH) ₂ as dual co-catalysts. RSC Advances, 2016, 6, 31497-31506.	3.6	94
23	Sequential bioethanol and biogas production from sugarcane bagasse based on high solids fed-batch SSF. Energy, 2015, 90, 1199-1205.	8.8	63
24	Enhanced enzymatic hydrolysis of sugarcane bagasse with ferric chloride pretreatment and surfactant. Bioresource Technology, 2017, 229, 96-103.	9.6	63
25	Enhancing enzymatic hydrolysis of sugarcane bagasse by ferric chloride catalyzed organosolv pretreatment and Tween 80. Bioresource Technology, 2018, 258, 295-301.	9.6	61
26	FeCl3-catalyzed ethanol pretreatment of sugarcane bagasse boosts sugar yields with low enzyme loadings and short hydrolysis time. Bioresource Technology, 2018, 249, 395-401.	9.6	55
27	Optimization of high solids fed-batch saccharification of sugarcane bagasse based on system viscosity changes. Journal of Biotechnology, 2015, 211, 5-9.	3.8	52
28	Ethanol production from mixtures of sugarcane bagasse and Dioscorea composita extracted residue with high solid loading. Bioresource Technology, 2018, 257, 23-29.	9.6	42
29	Sodium hydroxide catalytic ethanol pretreatment and surfactant on the enzymatic saccharification of sugarcane bagasse. Bioresource Technology, 2021, 319, 124171.	9.6	39
30	Effects of NaOH-catalyzed organosolv pretreatment and surfactant on the sugar production from sugarcane bagasse. Bioresource Technology, 2020, 312, 123601.	9.6	37
31	Effects of ferric chloride pretreatment and surfactants on the sugar production from sugarcane bagasse. Bioresource Technology, 2018, 265, 93-101.	9.6	36
32	Monolithic SiC-foam supported Ni-La2O3 composites for dry reforming of methane with enhanced carbon resistance. Fuel Processing Technology, 2021, 212, 106627.	7.2	33
33	Integrating sugarcane molasses into sequential cellulosic biofuel production based on SSF process of high solid loading. Biotechnology for Biofuels, 2018, 11, 329.	6.2	22
34	Intensification of sugar production by using Tween 80 to enhance metal-salt catalyzed pretreatment and enzymatic hydrolysis of sugarcane bagasse. Bioresource Technology, 2021, 339, 125522.	9.6	22
35	The responses of two genes encoding phytoene synthase (Psy) and phytoene desaturase (Pds) to nitrogen limitation and salinity up-shock with special emphasis on carotenogenesis in Dunaliella parva. Algal Research, 2018, 32, 1-10.	4.6	20
36	Enhanced co-generation of cellulosic ethanol and methane with the starch/sugar-rich waste mixtures and Tween 80 in fed-batch mode. Biotechnology for Biofuels, 2019, 12, 227.	6.2	19

#	ARTICLE	IF	CITATIONS
37	De novo Transcriptome Assembly and the Putative Biosynthetic Pathway of Steroidal Sapogenins of Dioscorea composita. PLoS ONE, 2015, 10, e0124560.	2.5	19
38	Acid-tolerant plant species screened for rehabilitating acid mine drainage sites. Journal of Soils and Sediments, 2015, 15, 1104-1112.	3.0	15
39	Dioscorea composita WRKY3 positively regulates salt-stress tolerance in transgenic Arabidopsis thaliana. Journal of Plant Physiology, 2022, 269, 153592.	3.5	11
40	Cloning and differential expression analysis of geranylgeranyl diphosphate synthase gene from Dunaliella parva. Journal of Applied Phycology, 2016, 28, 2397-2405.	2.8	10
41	Further insights into the solubilization and surface modification of lignin on enzymatic hydrolysis and ethanol production. Renewable Energy, 2022, 186, 646-655.	8.9	9
42	Biorefinery of Dioscorea composita Hemsl with ferric chloride for saponins conversion to diosgenin and recycling the waste to biomethane. Industrial Crops and Products, 2019, 135, 122-129.	5.2	8
43	The promotional role of \hat{l}^2 -cyclodextrin on Ni-Mo2C/MgO catalyst for biogas reforming. Molecular Catalysis, 2021, 515, 111897.	2.0	7
44	Hydrothermal co-hydrolysis of corncob/sugarcane bagasse/Broussonetia papyrifera blends: Kinetics, thermodynamics and fermentation. Bioresource Technology, 2021, 342, 125923.	9.6	7
45	Iron-fortified Anaerobic Co-digestion Performance of Kitchen Waste and Pennisetum Hybrid. Bioenergy Research, 2023, 16, 651-659.	3.9	5