Gabi Daniel Stancu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8015836/publications.pdf Version: 2024-02-01

CARL DANIEL STANCH

#	Article	IF	CITATIONS
1	Ultrafast heating and oxygen dissociation in atmospheric pressure air by nanosecond repetitively pulsed discharges. Journal Physics D: Applied Physics, 2013, 46, 464010.	2.8	228
2	Atmospheric pressure plasma diagnostics by OES, CRDS and TALIF. Journal Physics D: Applied Physics, 2010, 43, 124002.	2.8	195
3	Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the glow regime. Plasma Sources Science and Technology, 2009, 18, 045030.	3.1	146
4	Review on VUV to MIR absorption spectroscopy of atmospheric pressure plasma jets. Plasma Sources Science and Technology, 2015, 24, 054001.	3.1	101
5	Argon metastables in HiPIMS: time-resolved tunable diode-laser diagnostics. Plasma Sources Science and Technology, 2012, 21, 025010.	3.1	84
6	Experimental study of the hydrodynamic expansion following a nanosecond repetitively pulsed discharge in air. Applied Physics Letters, 2011, 99, .	3.3	75
7	Detailed study of the plasma-activated catalytic generation of ammonia in N2-H2 plasmas. Journal of Applied Physics, 2007, 101, 043305.	2.5	69
8	Understanding deposition rate loss in high power impulse magnetron sputtering: I. Ionization-driven electric fields. Plasma Sources Science and Technology, 2012, 21, 025005.	3.1	64
9	Time-Resolved CRDS Measurements of the N ₂ (A ³ Σ _{<i>u</i>} ⁺) Density Produced by Nanosecond Discharges in Atmospheric Pressure Nitrogen and Air. Journal of Physical Chemistry A, 2010, 114, 201-208.	2.5	54
10	In Situ Monitoring of Silicon Plasma Etching Using a Quantum Cascade Laser Arrangement. Chemical Vapor Deposition, 2007, 13, 351-360.	1.3	45
11	Effects of pulsation frequency and energy deposition on ignition using nanosecond repetitively pulsed discharges. Proceedings of the Combustion Institute, 2017, 36, 4079-4086.	3.9	44
12	Fully ionized nanosecond discharges in air: the thermal spark. Plasma Sources Science and Technology, 2020, 29, 085003.	3.1	43
13	Hydrodynamic regimes induced by nanosecond pulsed discharges in air: mechanism of vorticity generation. Journal Physics D: Applied Physics, 2019, 52, 364001.	2.8	35
14	Argon metastables in HiPIMS: validation of the ionization region model by direct comparison to time resolved tunable diode-laser diagnostics. Plasma Sources Science and Technology, 2015, 24, 045011.	3.1	33
15	Spatial evolution of the plasma kernel produced by nanosecond discharges in air. Journal Physics D: Applied Physics, 2019, 52, 295203.	2.8	33
16	Cumulative effect of successive nanosecond repetitively pulsed discharges on the ignition of lean mixtures. Proceedings of the Combustion Institute, 2019, 37, 5553-5560.	3.9	29
17	Are the argon metastables important in high power impulse magnetron sputtering discharges?. Physics of Plasmas, 2015, 22, .	1.9	26
18	Large-volume excitation of air, argon, nitrogen and combustible mixtures by thermal jets produced by nanosecond spark discharges. Plasma Sources Science and Technology, 2017, 26, 04LT01.	3.1	25

GABI DANIEL STANCU

#	Article	IF	CITATIONS
19	Two-photon absorption laser induced fluorescence: rate and density-matrix regimes for plasma diagnostics. Plasma Sources Science and Technology, 2020, 29, 054001.	3.1	25
20	Plasma-assisted combustion with nanosecond discharges. I: Discharge effects characterization in the burnt gases of a lean flame. Plasma Sources Science and Technology, 2022, 31, 045029.	3.1	22
21	Images of a Nanosecond Repetitively Pulsed Glow Discharge Between Two Point Electrodes in Air at 300 K and at Atmospheric Pressure. IEEE Transactions on Plasma Science, 2011, 39, 2254-2255.	1.3	19
22	Ultrafast Heating in Nanosecond Discharges in Atmospheric Pressure Air. , 2012, , .		13
23	Microwave air plasmas in capillaries at low pressure II. Experimental investigation. Journal Physics D: Applied Physics, 2016, 49, 435202.	2.8	12
24	Quenching rate of N(2P) atoms in a nitrogen afterglow at atmospheric pressure. Journal Physics D: Applied Physics, 2018, 51, 314001.	2.8	12
25	Improved flow conditions in diamond hot filament CVD—Promising deposition results and gas phase characterization by laser absorption spectroscopy. Vacuum, 2007, 81, 619-626.	3.5	11
26	The role of excited electronic states in ambient air ionization by a nanosecond discharge. Plasma Sources Science and Technology, 2021, 30, 035008.	3.1	11
27	N ₂ (<i>A</i>) as the source of excited species of N ₂ , N and O in a flowing afterglow of N ₂ /NO mixture at atmospheric pressure. Plasma Sources Science and Technology, 2011, 20, 025005.	3.1	9
28	On the arc transition mechanism in nanosecond air discharges. , 2019, , .		9
29	High-spatial resolution measurements of NO density and temperature by Mid-IR QCLAS in open-air confined plasmas. Journal Physics D: Applied Physics, 2017, 50, 274004.	2.8	6
30	Measurement of the Transition Dipole Moment of the First Hot Band of the ν2 Mode of the Methyl Radical by Diode Laser Spectroscopy. Journal of Physical Chemistry A, 2008, 112, 6285-6288.	2.5	5
31	Role of the excited electronic states in the ionization of ambient air by a nanosecond discharge. , 2020, , .		5
32	Investigation of atmospheric pressure nitrogen plasmas by cavity ring down spectroscopy. Journal of Physics: Conference Series, 2009, 157, 012005.	0.4	4
33	Hydrodynamic and thermal effects of continuous microwave-sustained plasma in capillary tubes. Plasma Sources Science and Technology, 2015, 24, 065007.	3.1	4
34	Ground-State Atomic Nitrogen Measurements using fs-TALIF in High-Pressure NRP Discharges. , 2020, , .		4
35	Quantitative fs-TALIF in high-pressure NRP discharges: calibration using VUV absorption spectroscopy. Plasma Sources Science and Technology, 2022, 31, 015004.	3.1	4
36	Femtosecond Two-Photon Absorption Laser Induced Fluorescence (fs-TALIF) Imaging of Atomic Nitrogen in Nanosecond Repetitive Discharges. , 2019, , .		3

#	Article	IF	CITATIONS
37	Hydrodynamic effects induced by nanosecond sparks in air and air/fuel mixtures. , 2017, , .		2
38	Plasma power balance: methodology and investigations of microwave capillary discharges. Plasma Sources Science and Technology, 2022, 31, 055003.	3.1	1
39	Nonequilibrium plasma-assisted combustion: advanced spectroscopic methods for fundamental studies. , 2017, , .		0