
Raphael Isaac Benhamou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8015433/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA-encoded library versus RNA-encoded library selection enables design of an oncogenic noncoding RNA inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	24
2	Bioinformatic Searching for Optimal RNA Targets of Dimeric Compounds Informs Design of a MicroRNA-27a Inhibitor. ACS Chemical Biology, 2022, 17, 5-10.	1.6	2
3	A Small Molecule that Binds an RNA Repeat Expansion Stimulates Its Decay via the Exosome Complex. Cell Chemical Biology, 2021, 28, 34-45.e6.	2.5	23
4	Combining Colistin and Fluconazole Synergistically Increases Fungal Membrane Permeability and Antifungal Cidality. ACS Infectious Diseases, 2021, 7, 377-389.	1.8	17
5	A Druglike Small Molecule that Targets r(CCUG) Repeats in Myotonic Dystrophy Type 2 Facilitates Degradation by RNA Quality Control Pathways. Journal of Medicinal Chemistry, 2021, 64, 8474-8485.	2.9	14
6	Reprogramming of Protein-Targeted Small-Molecule Medicines to RNA by Ribonuclease Recruitment. Journal of the American Chemical Society, 2021, 143, 13044-13055.	6.6	56
7	Ribonuclease recruitment using a small molecule reduced c9ALS/FTD r(G ₄ C ₂) Tj ETQ	91_1_0.78	4314 rgBT /C
8	Targeting the SARS-CoV-2 RNA Genome with Small Molecule Binders and Ribonuclease Targeting Chimera (RIBOTAC) Degraders. ACS Central Science, 2020, 6, 1713-1721.	5.3	135
9	Optimization of the Linker Domain in a Dimeric Compound that Degrades an r(CUG) Repeat Expansion in Cells. Journal of Medicinal Chemistry, 2020, 63, 7827-7839.	2.9	5
10	Macrocyclization of a Ligand Targeting a Toxic RNA Dramatically Improves Potency. ChemBioChem, 2020, 21, 3229-3233.	1.3	2
11	Progress toward the development of the small molecule equivalent of small interfering RNA. Current Opinion in Chemical Biology, 2020, 56, 63-71.	2.8	13
12	Structure-Specific Cleavage of an RNA Repeat Expansion with a Dimeric Small Molecule Is Advantageous over Sequence-Specific Recognition by an Oligonucleotide. ACS Chemical Biology, 2020, 15, 485-493.	1.6	17
13	A Toxic RNA Catalyzes the Cellular Synthesis of Its Own Inhibitor, Shunting It to Endogenous Decay Pathways. Cell Chemical Biology, 2020, 27, 223-231.e4.	2.5	18
14	Antifungal activity, mode of action variability, and subcellular distribution of coumarin-based antifungal azoles. European Journal of Medicinal Chemistry, 2019, 179, 779-790.	2.6	39
15	Bacterial-derived exopolysaccharides enhance antifungal drug tolerance in a cross-kingdom oral biofilm. ISME Journal, 2018, 12, 1427-1442.	4.4	111
16	Localizing Antifungal Drugs to the Correct Organelle Can Markedly Enhance their Efficacy. Angewandte Chemie, 2018, 130, 6338-6343.	1.6	10
17	Localizing Antifungal Drugs to the Correct Organelle Can Markedly Enhance their Efficacy. Angewandte Chemie - International Edition, 2018, 57, 6230-6235.	7.2	29
18	Increased Degree of Unsaturation in the Lipid of Antifungal Cationic Amphiphiles Facilitates Selective Fungal Cell Disruption. ACS Infectious Diseases, 2018, 4, 825-836.	1.8	34

Raphael Isaac Benhamou

#	Article	IF	CITATIONS
19	Cationic Amphiphiles Induce Macromolecule Denaturation and Organelle Decomposition in Pathogenic Yeast. Angewandte Chemie, 2018, 130, 16629-16633.	1.6	6
20	Fluorescent Tracking of the Endoplasmic Reticulum in Live Pathogenic Fungal Cells. ACS Chemical Biology, 2018, 13, 3325-3332.	1.6	26
21	Cationic Amphiphiles Induce Macromolecule Denaturation and Organelle Decomposition in Pathogenic Yeast. Angewandte Chemie - International Edition, 2018, 57, 16391-16395.	7.2	21
22	Real-Time Imaging of the Azole Class of Antifungal Drugs in Live Candida Cells. ACS Chemical Biology, 2017, 12, 1769-1777.	1.6	57
23	Structural insights of lincosamides targeting the ribosome of Staphylococcus aureus. Nucleic Acids Research, 2017, 45, 10284-10292.	6.5	50
24	Tuning the Effects of Bacterial Membrane Permeability through Photoâ€Isomerization of Antimicrobial Cationic Amphiphiles. Chemistry - A European Journal, 2017, 23, 12724-12728.	1.7	18
25	Antifungal Imidazoleâ€Decorated Cationic Amphiphiles with Markedly Low Hemolytic Activity. Chemistry - A European Journal, 2016, 22, 11148-11151.	1.7	20
26	Synthesis and evaluation of membrane permeabilizing properties of cationic amphiphiles derived from the disaccharide trehalose. Organic and Biomolecular Chemistry, 2016, 14, 3012-3015.	1.5	14
27	Diâ€ <i>N</i> â€Methylation of Antiâ€Gramâ€Positive Aminoglycosideâ€Derived Membrane Disruptors Improves Antimicrobial Potency and Broadens Spectrum to Gramâ€Negative Bacteria. Angewandte Chemie - International Edition, 2015, 54, 13617-13621.	7.2	37
28	Tobramycin and Nebramine as Pseudoâ€oligosaccharide Scaffolds for the Development of Antimicrobial Cationic Amphiphiles. Chemistry - A European Journal, 2015, 21, 4340-4349.	1.7	36