Jianxiang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/801521/publications.pdf

Version: 2024-02-01

28	899	14	28
papers	citations	h-index	g-index
29	29	29	2045
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Protein Corona Influences Cellular Uptake of Gold Nanoparticles by Phagocytic and Nonphagocytic Cells in a Size-Dependent Manner. ACS Applied Materials & Size-Dependent & Size-Depe	8.0	243
2	MicroRNA-193a-3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway. Oncogene, 2015, 34, 413-423.	5.9	238
3	Environmental Radon Exposure and Childhood Leukemia. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2012, 15, 332-347.	6.5	60
4	Oxidative DNA damage is involved in cigarette smoke-induced lung injury in rats. Environmental Health and Preventive Medicine, 2015, 20, 318-324.	3.4	50
5	Proteomic alteration in lung tissue of rats exposed to cigarette smoke. Toxicology Letters, 2008, 178, 191-196.	0.8	38
6	Down-regulation of let-7 microRNA increased K-ras expression in lung damage induced by radon. Environmental Toxicology and Pharmacology, 2015, 40, 541-548.	4.0	26
7	Cigarette Smoke-Induced Failure of Apoptosis Resulting in Enhanced Neoplastic Transformation in Human Bronchial Epithelial Cells. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2012, 75, 707-720.	2.3	21
8	Aberrant DNA methylation in radon and/or cigarette smoke-induced malignant transformation in BEAS-2B human lung cell line. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80, 1321-1330.	2.3	20
9	PM2.5-induced extensive DNA methylation changes in the heart of zebrafish embryos and the protective effect of folic acid. Environmental Pollution, 2019, 255, 113331.	7.5	20
10	Protective Effects of Polysaccharides from Sipunculus nudus on Beagle Dogs Exposed to \hat{I}^3 -Radiation. PLoS ONE, 2014, 9, e104299.	2.5	19
11	The role of miR-182-5p in hepatocarcinogenesis of trichloroethylene in mice. Toxicological Sciences, 2016, 156, kfw246.	3.1	17
12	Circadian alterations of reproductive functional markers in male rats exposed to 1800 MHz radiofrequency field. Chronobiology International, 2014, 31, 123-133.	2.0	16
13	The role of miR-130a-3p and SPOCK1 in tobacco exposed bronchial epithelial BEAS-2B transformed cells: Comparison to A549 and H1299 lung cancer cell lines. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2019, 82, 862-869.	2.3	16
14	Postchronic Single-Walled Carbon Nanotube Exposure Causes Irreversible Malignant Transformation of Human Bronchial Epithelial Cells through DNA Methylation Changes. ACS Nano, 2021, 15, 7094-7104.	14.6	16
15	Downregulation of m ⁶ A Reader YTHDC2 Promotes the Proliferation and Migration of Malignant Lung Cells via CYLD/NF-ÎB Pathway. International Journal of Biological Sciences, 2021, 17, 2633-2651.	6.4	16
16	Effects of melatonin on mechanisms involved in hypertension using human umbilical vein endothelial cells. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80, 1342-1348.	2.3	15
17	Identification and validation of smoking-related genes in lung adenocarcinoma using an in vitro carcinogenesis model and bioinformatics analysis. Journal of Translational Medicine, 2020, 18, 313.	4.4	11
18	RAD18 Activates the G2/M Checkpoint through DNA Damage Signaling to Maintain Genome Integrity after Ionizing Radiation Exposure. PLoS ONE, 2015, 10, e0117845.	2.5	9

#	Article	IF	CITATIONS
19	Effects of radon on miR-34a–induced apoptosis in human bronchial epithelial BEAS-2B cells. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2019, 82, 913-919.	2.3	9
20	Expression profiles of long non-coding RNA in mouse lung tissue exposed to radon. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2019, 82, 854-861.	2.3	7
21	Pharmacokinetics, tissue distribution and excretion of a recombinant fusion protein 125I-rhTNT-IL2. Journal of Radioanalytical and Nuclear Chemistry, 2007, 273, 3-8.	1.5	5
22	Role of miR-182-5p overexpression in trichloroethylene-induced abnormal cell cycle functions in human HepG2 cells. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2019, 82, 920-927.	2.3	5
23	Sexâ€dimorphic distribution and antiâ€oxidative effects of selenomethionine and Seâ€methylselenocysteine supplementation. Journal of Food Science, 2021, 86, 5424-5438.	3.1	5
24	Characterization of degradation products of carrageenan by LC-QTOF/MS with a hypothetical database. Food Chemistry, 2022, 384, 132504.	8.2	5
25	Role of DNA methylation regulation of miR-130b expression in human lung cancer using bioinformatics analysis. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2019, 82, 935-943.	2.3	4
26	Methyl-Cantharidimide Inhibits Growth of Human Hepatocellular Carcinoma Cells by Inducing Cell Cycle Arrest and Promoting Apoptosis. Frontiers in Oncology, 2019, 9, 1234.	2.8	3
27	miRâ€'200b upregulation promotes migration of BEASâ€'2B cells following longâ€'term exposure to cigarette smoke by targeting ETS1. Molecular Medicine Reports, 2021, 24, .	2.4	3
28	A novel 12-gene signature as independent prognostic model in stage IA and IB lung squamous cell carcinoma patients. Clinical and Translational Oncology, 2021, 23, 2368-2381.	2.4	2