Cesare Gargioli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8015088/publications.pdf

Version: 2024-02-01

68 3,552 27 57
papers citations h-index g-index

72 72 72 5478
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vitro and in vivo. Cell Death and Disease, 2018, 9, 1.	2.7	600
2	The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO Journal, 2002, 21, 4393-4401.	3.5	306
3	A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes. Scientific Reports, 2018, 8, 13532.	1.6	268
4	Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers inÂvitro and inAvivo. Biomaterials, 2017, 131, 98-110.	5.7	252
5	3D Bioprinting in Skeletal Muscle Tissue Engineering. Small, 2019, 15, e1805530.	5.2	192
6	Cell lineage tracing during Xenopus tail regeneration. Development (Cambridge), 2004, 131, 2669-2679.	1.2	186
7	3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head. Biofabrication, 2019, 11, 044101.	3.7	120
8	PIGF–MMP-9–expressing cells restore microcirculation and efficacy of cell therapy in aged dystrophic muscle. Nature Medicine, 2008, 14, 973-978.	15.2	115
9	3D hydrogel environment rejuvenates aged pericytes for skeletal muscle tissue engineering. Frontiers in Physiology, 2014, 5, 203.	1.3	90
10	Tendon Tissue Engineering: Effects of Mechanical and Biochemical Stimulation on Stem Cell Alignment on Cellâ€Laden Hydrogel Yarns. Advanced Healthcare Materials, 2019, 8, e1801218.	3.9	84
11	<i>In vivo</i> generation of a mature and functional artificial skeletal muscle. EMBO Molecular Medicine, 2015, 7, 411-422.	3.3	79
12	Injectable polyethylene glycol-fibrinogen hydrogel adjuvant improves survival and differentiation of transplanted mesoangioblasts in acute and chronic skeletal-muscle degeneration. Skeletal Muscle, 2012, 2, 24.	1.9	78
13	Adipogenesis of skeletal muscle fibro/adipogenic progenitors is affected by the WNT5a/GSK3 \hat{l}^2 -catenin axis. Cell Death and Differentiation, 2020, 27, 2921-2941.	5.0	69
14	A novel, inducible, eukaryotic gene expression system based on the quorumâ€sensing transcription factor TraR. EMBO Reports, 2003, 4, 159-165.	2.0	68
15	Engineering Muscle Networks in 3D Gelatin Methacryloyl Hydrogels: Influence of Mechanical Stiffness and Geometrical Confinement. Frontiers in Bioengineering and Biotechnology, 2017, 5, 22.	2.0	60
16	Matrix scaffolding for stem cell guidance toward skeletal muscle tissue engineering. Journal of Orthopaedic Surgery and Research, 2016, 11, 86.	0.9	59
17	PIGF–MMP9-engineered iPS cells supported on a PEG–fibrinogen hydrogel scaffold possess an enhanced capacity to repair damaged myocardium. Cell Death and Disease, 2014, 5, e1053-e1053.	2.7	54
18	Activation of the Pro-Oxidant PKCβll-p66Shc Signaling Pathway Contributes to Pericyte Dysfunction in Skeletal Muscles of Patients With Diabetes With Critical Limb Ischemia. Diabetes, 2016, 65, 3691-3704.	0.3	48

#	Article	IF	CITATIONS
19	Metformin Protects Skeletal Muscle from Cardiotoxin Induced Degeneration. PLoS ONE, 2014, 9, e114018.	1.1	45
20	$\langle i \rangle S \langle i \rangle$ -Nitrosoglutathione Reductase Deficiency-Induced $\langle i \rangle S \langle i \rangle$ -Nitrosylation Results in Neuromuscular Dysfunction. Antioxidants and Redox Signaling, 2014, 21, 570-587.	2.5	42
21	Fibro-adipogenic progenitors of dystrophic mice are insensitive to NOTCH regulation of adipogenesis. Life Science Alliance, 2019, 2, e201900437.	1.3	41
22	The Niche-Derived Glial Cell Line-Derived Neurotrophic Factor (GDNF) Induces Migration of Mouse Spermatogonial Stem/Progenitor Cells. PLoS ONE, 2013, 8, e59431.	1.1	39
23	Metabolic reprogramming of fibro/adipogenic progenitors facilitates muscle regeneration. Life Science Alliance, 2020, 3, e202000646.	1.3	36
24	Purification and characterization of a fibrinogenolytic and hemorrhagic metalloproteinase isolated from Vipera lebetina venom. Biochimie, 2010, 92, 797-805.	1.3	35
25	Combination of biochemical and mechanical cues for tendon tissue engineering. Journal of Cellular and Molecular Medicine, 2017, 21, 2711-2719.	1.6	35
26	Tissue engineering for skeletal muscle regeneration. Muscles, Ligaments and Tendons Journal, 2012, 2, 230-4.	0.1	34
27	Metformin Delays Satellite Cell Activation and Maintains Quiescence. Stem Cells International, 2019, 2019, 1-19.	1.2	32
28	Biofabricating murine and human myoâ€substitutes for rapid volumetric muscle loss restoration. EMBO Molecular Medicine, 2021, 13, e12778.	3.3	29
29	Regulation of myoblast differentiation by metabolic perturbations induced by metformin. PLoS ONE, 2017, 12, e0182475.	1.1	28
30	High-Density ZnO Nanowires as a Reversible Myogenic–Differentiation Switch. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 14097-14107.	4.0	23
31	Lens-forming competence in the epidermis of Xenopus laevis during development. Journal of Experimental Zoology Part A, Comparative Experimental Biology, 2005, 303A, 1-12.	1.3	21
32	SCA-1 micro-heterogeneity in the fate decision of dystrophic fibro/adipogenic progenitors. Cell Death and Disease, 2021, 12, 122.	2.7	21
33	Group I Paks support muscle regeneration and counteract cancerâ€associated muscle atrophy. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 727-746.	2.9	20
34	The immunosuppressant drug azathioprine restrains adipogenesis of muscle Fibro/Adipogenic Progenitors from dystrophic mice by affecting AKT signaling. Scientific Reports, 2019, 9, 4360.	1.6	20
35	High-Dimensional Single-Cell Quantitative Profiling of Skeletal Muscle Cell Population Dynamics during Regeneration. Cells, 2020, 9, 1723.	1.8	18
36	The lens-regenerating competence in the outer cornea and epidermis of larval Xenopus laevis is related to pax6 expression. Journal of Anatomy, 2008, 212, 612-620.	0.9	17

#	Article	IF	Citations
37	Tissue interactions and lens-forming competence in the outer cornea of larvalXenopus laevis. The Journal of Experimental Zoology, 2003, 299A, 161-171.	1.4	16
38	Skeletal Muscle-Derived Human Mesenchymal Stem Cells: Influence of Different Culture Conditions on Proliferative and Myogenic Capabilities. Frontiers in Physiology, 2020, 11, 553198.	1.3	16
39	Binding of sFRP-3 to EGF in the Extra-Cellular Space Affects Proliferation, Differentiation and Morphogenetic Events Regulated by the Two Molecules. PLoS ONE, 2008, 3, e2471.	1.1	16
40	PIM1 destabilization activates a p53-dependent response to ribosomal stress in cancer cells. Oncotarget, 2016, 7, 23837-23849.	0.8	16
41	Isolation and characterization of a myotoxin from the venom of Macrovipera lebetina transmediterranea. Toxicon, 2010, 56, 381-390.	0.8	15
42	Role of TPBG (Trophoblast Glycoprotein) Antigen in Human Pericyte Migratory and Angiogenic Activity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1113-1124.	1.1	15
43	Extracellular Vesicles from Skeletal Muscle Cells Efficiently Promote Myogenesis in Induced Pluripotent Stem Cells. Cells, 2020, 9, 1527.	1.8	15
44	Could a functional artificial skeletal muscle be useful in muscle wasting?. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 1.	1.3	13
45	Lack of PKCÎ, Promotes Regenerative Ability of Muscle Stem Cells in Chronic Muscle Injury. International Journal of Molecular Sciences, 2020, 21, 932.	1.8	13
46	The War after War: Volumetric Muscle Loss Incidence, Implication, Current Therapies and Emerging Reconstructive Strategies, a Comprehensive Review. Biomedicines, 2021, 9, 564.	1.4	13
47	Engineering Human-Scale Artificial Bone Grafts for Treating Critical-Size Bone Defects. ACS Applied Bio Materials, 2019, 2, 5077-5092.	2.3	12
48	Tackling Current Biomedical Challenges With Frontier Biofabrication and Organ-On-A-Chip Technologies. Frontiers in Bioengineering and Biotechnology, 2021, 9, 732130.	2.0	11
49	The optic vesicle promotes cornea to lens transdifferentiation in larval Xenopus laevis. Journal of Anatomy, 2008, 212, 621-626.	0.9	10
50	Characterization of the Skeletal Muscle Secretome Reveals a Role for Extracellular Vesicles and $\rm IL1\hat{l}\pm/IL1\hat{l}^2$ in Restricting Fibro/Adipogenic Progenitor Adipogenesis. Biomolecules, 2021, 11, 1171.	1.8	10
51	Neurogenesis during optic tectum regeneration in <i>Xenopus laevis</i> . Development Growth and Differentiation, 2010, 52, 365-376.	0.6	9
52	Characterization by mass cytometry of different methods for the preparation of muscle mononuclear cells. New Biotechnology, 2016, 33, 514-523.	2.4	9
53	Myo-REG: A Portal for Signaling Interactions in Muscle Regeneration. Frontiers in Physiology, 2019, 10, 1216.	1.3	8
54	Intramuscular Transplantation of Muscle Precursor Cells over-expressing MMP-9 improves Transplantation Success. PLOS Currents, 2011, 3, RRN1275.	1.4	8

#	Article	IF	CITATIONS
55	The change in Ig regulation from children to adults disconnects the correlation with the 3'RR hs1.2 polymorphism. BMC Immunology, 2014, 15, 45.	0.9	7
56	Designing a 3D printed human derived artificial myo-structure for anal sphincter defects in anorectal malformations and adult secondary damage. Materials Today Communications, 2018, 15, 120-123.	0.9	7
57	Myoblast Myogenic Differentiation but Not Fusion Process Is Inhibited via MyoD Tetraplex Interaction. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-8.	1.9	7
58	Adipogenesis of Skeletal Muscle Fibro/Adipogenic Progenitors is Controlled by the WNT5a/GSK3/ \hat{l}^2 -Catenin Axis. SSRN Electronic Journal, 0, , .	0.4	7
59	Evidence for a quadruplex structure in the polymorphic hs1.2 enhancer of the immunoglobulin heavy chain 3' regulatory regions and its conservation in mammals. Biopolymers, 2016, 105, 768-778.	1.2	6
60	Association between Psoriasis and haplotypes of the IgH 3' Regulatory Region 1. Gene, 2018, 669, 47-51.	1.0	6
61	Dystrophic Muscle Affects Motoneuron Axon Outgrowth and NMJ Assembly. Advanced Materials Technologies, 2022, 7, .	3.0	6
62	Crystallization and preliminary X-ray diffraction studies of the transcriptional regulator TraR bound to its cofactor and to a specific DNA sequence. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1362-1364.	2.5	4
63	Skeletal Muscle Subpopulation Rearrangements upon Rhabdomyosarcoma Development through Single-Cell Mass Cytometry. Journal of Clinical Medicine, 2021, 10, 823.	1.0	4
64	Photocurable Biopolymers for Coaxial Bioprinting. Methods in Molecular Biology, 2021, 2147, 45-54.	0.4	3
65	Comparison of Four Different Preparation Methods for Making Injectable Microgels for Tissue Engineering and Cell Therapy. Regenerative Engineering and Translational Medicine, 0, , .	1.6	2
66	Editorial: Physico-Chemical Control of Cell Function. Frontiers in Physiology, 2019, 10, 355.	1.3	1
67	Aligned Cellâ€Laden Yarns: Tendon Tissue Engineering: Effects of Mechanical and Biochemical Stimulation on Stem Cell Alignment on Cellâ€Laden Hydrogel Yarns (Adv. Healthcare Mater. 7/2019). Advanced Healthcare Materials, 2019, 8, 1970025.	3.9	1
68	Reticulon-1C Involvement in Muscle Regeneration. Metabolites, 2021, 11, 855.	1.3	0