
Anwesha Sarkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8014999/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Behaviour of an oil-in-water emulsion stabilized by β-lactoglobulin in an in vitro gastric model. Food Hydrocolloids, 2009, 23, 1563-1569.	5.6	311
2	Recent advances in emulsion-based delivery approaches for curcumin: From encapsulation to bioaccessibility. Trends in Food Science and Technology, 2018, 71, 155-169.	7.8	297
3	Colloidal stability and interactions of milk-protein-stabilized emulsions in an artificial saliva. Food Hydrocolloids, 2009, 23, 1270-1278.	5.6	274
4	A standardised semi-dynamic <i>in vitro</i> digestion method suitable for food – an international consensus. Food and Function, 2020, 11, 1702-1720.	2.1	233
5	Behaviour of protein-stabilised emulsions under various physiological conditions. Advances in Colloid and Interface Science, 2011, 165, 47-57.	7.0	224
6	Sustainable food-grade Pickering emulsions stabilized by plant-based particles. Current Opinion in Colloid and Interface Science, 2020, 49, 69-81.	3.4	208
7	In vitro digestion of Pickering emulsions stabilized by soft whey protein microgel particles: influence of thermal treatment. Soft Matter, 2016, 12, 3558-3569.	1.2	198
8	Emulsion microgel particles: Novel encapsulation strategy for lipophilic molecules. Trends in Food Science and Technology, 2016, 55, 98-108.	7.8	154
9	Agingâ€related changes in quantity and quality of saliva: Where do we stand in our understanding?. Journal of Texture Studies, 2019, 50, 27-35.	1.1	145
10	Water-in-oil emulsions stabilized by surfactants, biopolymers and/or particles: a review. Trends in Food Science and Technology, 2020, 104, 49-59.	7.8	138
11	Colloidal aspects of digestion of Pickering emulsions: Experiments and theoretical models of lipid digestion kinetics. Advances in Colloid and Interface Science, 2019, 263, 195-211.	7.0	131
12	On the role of bile salts in the digestion of emulsified lipids. Food Hydrocolloids, 2016, 60, 77-84.	5.6	130
13	Interactions of milk protein-stabilized oil-in-water emulsions with bile salts in a simulated upper intestinal model. Food Hydrocolloids, 2010, 24, 142-151.	5.6	126
14	Lubrication of soft oral surfaces. Current Opinion in Colloid and Interface Science, 2019, 39, 61-75.	3.4	118
15	Properties of oil-in-water emulsions stabilized by β-lactoglobulin in simulated gastric fluid as influenced by ionic strength and presence of mucin. Food Hydrocolloids, 2010, 24, 534-541.	5.6	116
16	Pea protein microgel particles as Pickering stabilisers of oil-in-water emulsions: Responsiveness to pH and ionic strength. Food Hydrocolloids, 2020, 102, 105583.	5.6	112
17	Composite whey protein–cellulose nanocrystals at oil-water interface: Towards delaying lipid digestion. Food Hydrocolloids, 2018, 77, 436-444.	5.6	107
18	Modulating in vitro gastric digestion of emulsions using composite whey protein-cellulose nanocrystal interfaces. Colloids and Surfaces B: Biointerfaces. 2017, 158, 137-146.	2.5	103

#	Article	IF	CITATIONS
19	Relating rheology and tribology of commercial dairy colloids to sensory perception. Food and Function, 2017, 8, 563-573.	2.1	102
20	Water-In-Oil Pickering Emulsions Stabilized by Water-Insoluble Polyphenol Crystals. Langmuir, 2018, 34, 10001-10011.	1.6	100
21	Water-in-oil Pickering emulsions stabilized by an interfacial complex of water-insoluble polyphenol crystals and protein. Journal of Colloid and Interface Science, 2019, 548, 88-99.	5.0	99
22	Innovative yoghurts: Novel processing technologies for improving acid milk gel texture. Trends in Food Science and Technology, 2013, 33, 5-20.	7.8	94
23	Aqueous Lubrication, Structure and Rheological Properties of Whey Protein Microgel Particles. Langmuir, 2017, 33, 14699-14708.	1.6	93
24	Pickering emulsions stabilised by hydrophobically modified cellulose nanocrystals: Responsiveness to pH and ionic strength. Food Hydrocolloids, 2020, 99, 105344.	5.6	93
25	Novel starch based emulsion gels and emulsion microgel particles: Design, structure and rheology. Carbohydrate Polymers, 2017, 178, 86-94.	5.1	92
26	Marrying oral tribology to sensory perception: a systematic review. Current Opinion in Food Science, 2019, 27, 64-73.	4.1	86
27	On relating rheology and oral tribology to sensory properties in hydrogels. Food Hydrocolloids, 2019, 88, 101-113.	5.6	85
28	Pickering emulsions co-stabilized by composite protein/ polysaccharide particle-particle interfaces: Impact on in vitro gastric stability. Food Hydrocolloids, 2018, 84, 282-291.	5.6	83
29	Human saliva and model saliva at bulk to adsorbed phasesâ€â€°â€°âiinilarities and differences. Advances in Colloid and Interface Science, 2019, 273, 102034.	7.0	82
30	Pancreatin-induced coalescence of oil-in-water emulsions in an in vitro duodenal model. International Dairy Journal, 2010, 20, 589-597.	1.5	80
31	Influence of oral processing on appetite and food intake – A systematic review and meta-analysis. Appetite, 2018, 125, 253-269.	1.8	74
32	Emulsion stabilization by tomato seed protein isolate: Influence of pH, ionic strength and thermal treatment. Food Hydrocolloids, 2016, 57, 160-168.	5.6	69
33	Heteroprotein Complex Formation of Bovine Lactoferrin and Pea Protein Isolate: A Multiscale Structural Analysis. Biomacromolecules, 2017, 18, 625-635.	2.6	69
34	Emulsion Microgel Particles as High-Performance Bio-Lubricants. ACS Applied Materials & Interfaces, 2018, 10, 26893-26905.	4.0	67
35	Egg white protein microgels as aqueous Pickering foam stabilizers: Bubble stability and interfacial properties. Food Hydrocolloids, 2020, 98, 105292.	5.6	61
36	Impact of Protein Gel Porosity on the Digestion of Lipid Emulsions. Journal of Agricultural and Food Chemistry, 2015, 63, 8829-8837.	2.4	60

#	Article	IF	CITATIONS
37	Oral tribology: Providing insight into oral processing of food colloids. Food Hydrocolloids, 2021, 117, 106635.	5.6	60
38	Food texture influences on satiety: systematic review and meta-analysis. Scientific Reports, 2020, 10, 12929.	1.6	59
39	Evaluation of Tomato Processing Byâ€Products: A Comparative Study in a Pilot Scale Setup. Journal of Food Process Engineering, 2014, 37, 299-307.	1.5	58
40	Pickering emulsion stabilized by protein nanogel particles for delivery of curcumin: Effects of pH and ionic strength on curcumin retention. Food Structure, 2019, 21, 100113.	2.3	58
41	Water-in-Oil Pickering Emulsions Stabilized by Synergistic Particle–Particle Interactions. Langmuir, 2019, 35, 13078-13089.	1.6	57
42	Gellan gum: A new member in the dysphagia thickener family. Biotribology, 2019, 17, 8-18.	0.9	55
43	Review on fat replacement using protein-based microparticulated powders or microgels: A textural perspective. Trends in Food Science and Technology, 2020, 106, 457-468.	7.8	55
44	A quantitative assessment of the eating capability in the elderly individuals. Physiology and Behavior, 2015, 147, 274-281.	1.0	52
45	Oral processing of emulsion systems from a colloidal perspective. Food and Function, 2017, 8, 511-521.	2.1	51
46	Update on the methods for monitoring UFA oxidation in food products. European Journal of Lipid Science and Technology, 2015, 117, 1-14.	1.0	50
47	InÂvitro gastrointestinal digestion of pea protein isolate as a function of pH, food matrices, autoclaving, high-pressure and re-heat treatments. LWT - Food Science and Technology, 2017, 84, 511-519.	2.5	49
48	Pickering emulsions stabilized by colloidal gel particles complexed or conjugated with biopolymers to enhance bioaccessibility and cellular uptake of curcumin. Current Research in Food Science, 2020, 3, 178-188.	2.7	48
49	Gastrointestinal digestion of Pickering emulsions stabilised by hydrophobically modified cellulose nanocrystals: Release of short-chain fatty acids. Food Chemistry, 2020, 320, 126650.	4.2	46
50	Measuring eating capability, liking and difficulty perception of older adults: A textural consideration. Food Quality and Preference, 2016, 53, 47-56.	2.3	45
51	Design of novel emulsion microgel particles of tuneable size. Food Hydrocolloids, 2017, 71, 47-59.	5.6	45
52	Microgels as viscosity modifiers influence lubrication performance of continuum. Soft Matter, 2019, 15, 9614-9624.	1.2	42
53	3D Biomimetic Tongue-Emulating Surfaces for Tribological Applications. ACS Applied Materials & Interfaces, 2020, 12, 49371-49385.	4.0	42
54	Exploring mouthfeel in model wines: Sensory-to-instrumental approaches. Food Research International, 2017, 102, 478-486.	2.9	40

#	Article	IF	CITATIONS
55	Oral tribology: update on the relevance to study astringency in wines. Tribology - Materials, Surfaces and Interfaces, 2017, 11, 116-123.	0.6	40
56	Water-soluble vitamins for controlling starch digestion: Conformational scrambling and inhibition mechanism of human pancreatic α-amylase by ascorbic acid and folic acid. Food Chemistry, 2019, 288, 395-404.	4.2	38
57	Microstructure and long-term stability of spray dried emulsions with ultra-high oil content. Food Hydrocolloids, 2016, 52, 857-867.	5.6	37
58	Macromolecular design of folic acid functionalized amylopectin–albumin core–shell nanogels for improved physiological stability and colon cancer cell targeted delivery of curcumin. Journal of Colloid and Interface Science, 2020, 580, 561-572.	5.0	37
59	Effects of folic acid esterification on the hierarchical structure of amylopectin corn starch. Food Hydrocolloids, 2019, 86, 162-171.	5.6	36
60	Conjugate microgel-stabilized Pickering emulsions: Role in delaying gastric digestion. Food Hydrocolloids, 2020, 105, 105794.	5.6	36
61	New Approach to Food Difficulty Perception: Food Structure, Food Oral Processing and Individual's Physical Strength. Journal of Texture Studies, 2016, 47, 413-422.	1.1	35
62	Engineering oral delivery of hydrophobic bioactives in real-world scenarios. Current Opinion in Colloid and Interface Science, 2020, 48, 40-52.	3.4	35
63	Influence of mixed gel structuring with different degrees of matrix inhomogeneity on oral residence time. Food Hydrocolloids, 2016, 61, 286-299.	5.6	34
64	Designing biopolymer-coated Pickering emulsions to modulate in vitro gastric digestion: a static model study. Food and Function, 2019, 10, 5498-5509.	2.1	33
65	Tribology and rheology of bead-layered hydrogels: Influence of bead size on sensory perception. Food Hydrocolloids, 2020, 104, 105692.	5.6	31
66	Probing the frictional properties of soft materials at the nanoscale. Nanoscale, 2020, 12, 2292-2308.	2.8	29
67	Overcoming in vitro gastric destabilisation of emulsion droplets using emulsion microgel particles for targeted intestinal release of fatty acids. Food Hydrocolloids, 2019, 89, 523-533.	5.6	27
68	Recent advances in design and stability of double emulsions: Trends in Pickering stabilization. Food Hydrocolloids, 2022, 128, 107601.	5.6	27
69	Surface adsorption and lubrication properties of plant and dairy proteins: A comparative study. Food Hydrocolloids, 2021, 111, 106364.	5.6	26
70	Stability of water-in-oil emulsions co-stabilized by polyphenol crystal-protein complexes as a function of shear rate and temperature. Journal of Food Engineering, 2020, 281, 109991.	2.7	25
71	A Selfâ€Assembled Binary Protein Model Explains Highâ€Performance Salivary Lubrication from Macro to Nanoscale. Advanced Materials Interfaces, 2020, 7, 1901549.	1.9	24
72	Synergistic Microgel-Reinforced Hydrogels as High-Performance Lubricants. ACS Macro Letters, 2020, 9, 1726-1731.	2.3	24

#	Article	IF	CITATIONS
73	Increasing the oxidative stability of soybean oil through fortification with antioxidants. International Journal of Food Science and Technology, 2015, 50, 666-673.	1.3	23
74	Synergistic Interactions of Plant Protein Microgels and Cellulose Nanocrystals at the Interface and Their Inhibition of the Gastric Digestion of Pickering Emulsions. Langmuir, 2021, 37, 827-840.	1.6	22
75	Structurally induced modulation of in vitro digestibility of amylopectin corn starch upon esterification with folic acid. International Journal of Biological Macromolecules, 2019, 129, 361-369.	3.6	21
76	Oral tribology, adsorption and rheology of alternative food proteins. Food Hydrocolloids, 2021, 116, 106636.	5.6	21
77	The perfect hydrocolloid stabilizer: Imagination versus reality. Food Hydrocolloids, 2021, 117, 106696.	5.6	21
78	The influence of oral lubrication on food intake: A proof-of-concept study. Food Quality and Preference, 2019, 74, 118-124.	2.3	20
79	Dry mouth diagnosis and saliva substitutes—A review from a textural perspective. Journal of Texture Studies, 2021, 52, 141-156.	1.1	20
80	Protein–saliva interactions: a systematic review. Food and Function, 2021, 12, 3324-3351.	2.1	20
81	Perception of Difficulties Encountered in Eating Process from European Elderlies' Perspective. Journal of Texture Studies, 2016, 47, 342-352.	1.1	18
82	Cell Wall Polymer Composition and Spatial Distribution in Ripe Banana and Mango Fruit: Implications for Cell Adhesion and Texture Perception. Frontiers in Plant Science, 2019, 10, 858.	1.7	18
83	Combination of egg white protein and microgels to stabilize foams: Impact of processing treatments. Journal of Food Engineering, 2020, 275, 109860.	2.7	18
84	Protein Microgel-Stabilized Pickering Liquid Crystal Emulsions Undergo Analyte-Triggered Configurational Transition. Langmuir, 2020, 36, 10091-10102.	1.6	15
85	Oral processing in elderly: understanding eating capability to drive future food texture modifications. Proceedings of the Nutrition Society, 2019, 78, 329-339.	0.4	14
86	Rheology and tribology of starch + <i>κ</i> arrageenan mixtures. Journal of Texture Studies, 2021, 52, 16-24.	1.1	14
87	Impact of albumin corona on mucoadhesion and antimicrobial activity of carvacrol loaded chitosan nano-delivery systems under simulated gastro-intestinal conditions. International Journal of Biological Macromolecules, 2021, 169, 171-182.	3.6	11
88	Emulsions and Foams Stabilised by Milk Proteins. , 2016, , 133-153.		11
89	Comparison of oral tribological performance of proteinaceous microgel systems with protein-polysaccharide combinations. Food Hydrocolloids, 2022, 129, 107660.	5.6	11

90 Milk protein–polysaccharide interactions. , 2008, , 347-376.

#	Article	IF	CITATIONS
91	Assessment of eating capability of elderly subjects in UK: a quantitative evaluation. Proceedings of the Nutrition Society, 2015, 74, .	0.4	10
92	Milk protein-polysaccharide interactions. , 2020, , 499-535.		10
93	Friction between soft contacts at nanoscale on uncoated and protein-coated surfaces. Nanoscale, 2021, 13, 2350-2367.	2.8	10
94	Oral processing of hydrogels: Influence of food material properties versus individuals' eating capability. Journal of Texture Studies, 2020, 51, 144-153.	1.1	9
95	Eating Capability Assessments in Elderly Populations. , 2017, , 83-98.		6
96	Effects of oral lubrication on satiety, satiation and salivary biomarkers in model foods: A pilot study. Appetite, 2021, 165, 105427.	1.8	5
97	Viscosity of food influences perceived satiety: A video based online survey. Food Quality and Preference, 2022, 99, 104565.	2.3	4
98	In vitro oral processing of raw tomato: Novel insights into the role of endogenous fruit enzymes. Journal of Texture Studies, 2018, 49, 351-358.	1.1	3
99	Salivary lubricity (ex vivo) enhances upon moderate exercise: A pilot study. Archives of Oral Biology, 2020, 116, 104743.	0.8	2
100	Oral tribology of polysaccharides. , 2021, , 93-124.		1

7