Marco Morra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8014956/publications.pdf

Version: 2024-02-01

		185998	197535
51	2,425	28	49
papers	citations	h-index	g-index
53	53	53	3255
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	On the molecular basis of fouling resistance. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 547-569.	1.9	244
2	Non-fouling properties of polysaccharide-coated surfaces. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 1107-1124.	1.9	182
3	Engineering of Biomaterials Surfaces by Hyaluronan. Biomacromolecules, 2005, 6, 1205-1223.	2.6	174
4	Surface Tension Comparison of Four Common Root Canal Irrigants and Two New Irrigants Containing Antibiotic. Journal of Endodontics, 2006, 32, 1091-1093.	1.4	169
5	Bioactive calcium silicate ceramics and coatings. Biomedicine and Pharmacotherapy, 2008, 62, 526-529.	2.5	127
6	Surface chemistry effects of topographic modification of titanium dental implant surfaces: 1. Surface analysis. International Journal of Oral and Maxillofacial Implants, 2003, 18, 40-5.	0.6	79
7	Effects on Interfacial Properties and Cell Adhesion of Surface Modification by Pectic Hairy Regions. Biomacromolecules, 2004, 5, 2094-2104.	2.6	76
8	Alkaline phosphatase grafting on bioactive glasses and glass ceramics. Acta Biomaterialia, 2010, 6, 229-240.	4.1	74
9	Enzymatic surface modification of acrylonitrile fibers. Applied Surface Science, 2001, 177, 32-41.	3.1	67
10	Some Reflection on the Evaluation of the Lewis Acid–Base Properties of Polymer Surfaces by Wetting Measurements. Journal of Colloid and Interface Science, 1996, 182, 312-314.	5.0	66
11	Antioxidant mesoporous Ce-doped bioactive glass nanoparticles with anti-inflammatory and pro-osteogenic activities. Materials Today Bio, 2020, 5, 100041.	2.6	66
12	Thrombogenicity of polysaccharide-coated surfaces. Biomaterials, 2003, 24, 1917-1924.	5.7	65
13	The Incorporation of Strontium to Improve Bone-Regeneration Ability of Mesoporous Bioactive Glasses. Materials, 2018, 11, 678.	1.3	64
14	Biomolecular modification of implant surfaces. Expert Review of Medical Devices, 2007, 4, 361-372.	1.4	63
15	Effects of type I collagen coating on titanium osseointegration: histomorphometric, cellular and molecular analyses. Biomedical Materials (Bristol), 2012, 7, 035007.	1.7	63
16	Evaluation of interfacial properties of hyaluronan coated poly(methylmethacrylate) intraocular lenses. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 961-977.	1.9	60
17	Novel bioceramic-reinforced hydrogel for alveolar bone regeneration. Acta Biomaterialia, 2016, 44, 97-109.	4.1	60
18	Effect of Modified Pectin Molecules on the Growth of Bone Cells. Biomacromolecules, 2007, 8, 509-515.	2.6	59

#	Article	IF	Citations
19	Collagen type I coating stimulates bone regeneration and osteointegration of titanium implants in the osteopenic rat. International Orthopaedics, 2015, 39, 2041-2052.	0.9	52
20	Surface analysis and effects on interfacial bone microhardness of collagen-coated titanium implants: a rabbit model. International Journal of Oral and Maxillofacial Implants, 2005, 20, 23-30.	0.6	42
21	Surface Studies on a Model Cell-Resistant System. Langmuir, 1999, 15, 4658-4663.	1.6	40
22	Covalentlyâ€linked hyaluronan promotes bone formation around Ti implants in a rabbit model. Journal of Orthopaedic Research, 2009, 27, 657-663.	1.2	35
23	Biomimetic Surfaces Coated with Covalently Immobilized Collagen Type I: An X-Ray Photoelectron Spectroscopy, Atomic Force Microscopy, Micro-CT and Histomorphometrical Study in Rabbits. International Journal of Molecular Sciences, 2019, 20, 724.	1.8	33
24	Modulating <i>in vitro</i> bone cell and macrophage behavior by immobilized enzymatically tailored pectins. Journal of Biomedical Materials Research - Part A, 2008, 86A, 597-606.	2.1	32
25	Wilhelmy Plate Measurements on Poly(N-isopropylacrylamide)-Grafted Surfaces. Langmuir, 1998, 14, 4650-4656.	1.6	30
26	Gene expression of markers of osteogenic differentiation of human mesenchymal cells on collagen lâ€modified microrough titanium surfaces. Journal of Biomedical Materials Research - Part A, 2011, 96A, 449-455.	2.1	30
27	Incorporation of Boron in Mesoporous Bioactive Glass Nanoparticles Reduces Inflammatory Response and Delays Osteogenic Differentiation. Particle and Particle Systems Characterization, 2020, 37, 2000054.	1.2	30
28	Engineered porous scaffolds for periprosthetic infection prevention. Materials Science and Engineering C, 2016, 68, 701-715.	3.8	29
29	Simple model for the XPS analysis of polysaccharide-coated surfaces. Surface and Interface Analysis, 1998, 26, 742-747.	0.8	27
30	Dual Rinse \hat{A}^{\otimes} HEDP increases the surface tension of NaOCl but may increase its dentin disinfection efficacy. Odontology / the Society of the Nippon Dental University, 2019, 107, 521-529.	0.9	27
31	Development of the osteoblastic phenotype in human alveolar boneâ€derived cells grown on a collagen type lâ€coated titanium surface. Clinical Oral Implants Research, 2009, 20, 240-246.	1.9	25
32	Cell Adhesion Micropatterning by Plasma Treatment of Alginate Coated Surfaces. Plasmas and Polymers, 2002, 7, 89-101.	1.5	20
33	The effect of collagen coating on titanium with nanotopography on <i>in vitro</i> osteogenesis. Journal of Biomedical Materials Research - Part A, 2017, 105, 2783-2788.	2.1	20
34	Surface chemistry and effects on bone regeneration of a novel biomimetic synthetic bone filler. Journal of Materials Science: Materials in Medicine, 2015, 26, 159.	1.7	18
35	Atomic force microscopy evaluation of aqueous interfaces of immobilized hyaluronan. Journal of Colloid and Interface Science, 2003, 259, 236-243.	5. O	17
36	Affecting osteoblastic responses with <i>in vivo</i> engineered potato pectin fragments. Journal of Biomedical Materials Research - Part A, 2012, 100A, 111-119.	2.1	16

#	Article	IF	Citations
37	Polyphenols from grape pomace induce osteogenic differentiation in mesenchymal stem cells. International Journal of Molecular Medicine, 2020, 45, 1721-1734.	1.8	15
38	Letter to the Editor. , 1998, 42, 473-474.		14
39	Effects ofÂmolecular weight andÂsurface functionalization onÂsurface composition andÂcell adhesion toÂHyaluronan coated titanium. Biomedicine and Pharmacotherapy, 2006, 60, 365-369.	2.5	14
40	Force measurements on cell repellant and cell adhesive alginic acid coated surfaces. Colloids and Surfaces B: Biointerfaces, 2000, 18, 249-259.	2.5	12
41	Adherent Endotoxin on Dental Implant Surfaces: A Reappraisal. Journal of Oral Implantology, 2015, 41, 10-16.	0.4	12
42	<p>Silver Decorated Mesoporous Carbons for the Treatment of Acute and Chronic Wounds, in a Tissue Regeneration Context</p> . International Journal of Nanomedicine, 2019, Volume 14, 10147-10164.	3.3	12
43	New collagenâ€coated calcium phosphate synthetic bone filler (Synergoss [®]): A comparative surface analysis. International Journal of Applied Ceramic Technology, 2018, 15, 910-920.	1.1	11
44	Covalently-Linked Hyaluronan versus Acid Etched Titanium Dental Implants: A Crossover RCT in Humans. International Journal of Molecular Sciences, 2019, 20, 763.	1.8	11
45	Permanent wettability of a novel, nanoengineered, clinically available, hyaluronanâ€coated dental implant. Clinical and Experimental Dental Research, 2018, 4, 196-205.	0.8	10
46	A shelf-life study of silica- and carbon-based mesoporous materials. Journal of Industrial and Engineering Chemistry, 2021, 101, 205-213.	2.9	10
47	Comment to the paper: Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces, by F. Rupp, L. Scheideler, N. Olshanska, M. de Wild, M. Wieland, J. Geis-Gerstorfer. Journal of Biomedical Materials Research - Part A, 2006, 79A, 752-754.	2.1	6
48	Functionalization with a Polyphenol-Rich Pomace Extract Empowers a Ceramic Bone Filler with In Vitro Antioxidant, Anti-Inflammatory, and Pro-Osteogenic Properties. Journal of Functional Biomaterials, 2021, 12, 31.	1.8	5
49	Collagen I-Coated Titanium Surfaces for Bone Implantation. , 2009, , 373-396.		5
50	Fibrinogen adsorption, platelet adhesion and thrombin generation at heparinized surfaces exposed to flowing blood. Thrombosis and Haemostasis, 2002, 87, 742-7.	1.8	4
51	Cloning and Expression Analysis of Human Amelogenin in Nicotiana benthamiana Plants by Means of a Transient Expression System. Molecular Biotechnology, 2017, 59, 425-434.	1.3	2