
Karen E Christensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8014431/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mild Choline Deficiency and MTHFD1 Synthetase Deficiency Interact to Increase Incidence of Developmental Delays and Defects in Mice. Nutrients, 2022, 14, 127.	4.1	2
2	High folic acid intake increases methylation-dependent expression of Lsr and dysregulates hepatic cholesterol homeostasis. Journal of Nutritional Biochemistry, 2021, 88, 108554.	4.2	13
3	Moderate Folic Acid Supplementation in Pregnant Mice Results in Behavioral Alterations in Offspring with Sex-Specific Changes in Methyl Metabolism. Nutrients, 2020, 12, 1716.	4.1	20
4	Biochemical analysis of patients with mutations in MTHFD1 and a diagnosis of methylenetetrahydrofolate dehydrogenase 1 deficiency. Molecular Genetics and Metabolism, 2020, 130, 179-182.	1.1	9
5	Mild Methylenetetrahydrofolate Reductase Deficiency Alters Inflammatory and Lipid Pathways in Liver. Molecular Nutrition and Food Research, 2019, 63, e1801001.	3.3	35
6	Low Dietary Folate Interacts with MTHFD1 Synthetase Deficiency in Mice, a Model for the R653Q Variant, to Increase Incidence of Developmental Delays and Defects. Journal of Nutrition, 2018, 148, 501-509.	2.9	8
7	Testicular MTHFR deficiency may explain sperm DNA hypomethylation associated with high dose folic acid supplementation. Human Molecular Genetics, 2018, 27, 1123-1135.	2.9	42
8	Disturbances in Folate Metabolism and Their Impact on Development. , 2017, , 209-238.		0
9	Murine MTHFD1â€synthetase deficiency, a model for the human MTHFD1 R653Q polymorphism, decreases growth of colorectal tumors. Molecular Carcinogenesis, 2017, 56, 1030-1040.	2.7	7
10	Moderate folic acid supplementation and MTHFD1-synthetase deficiency in mice, a model for the R653Q variant, result in embryonic defects and abnormal placental development. American Journal of Clinical Nutrition, 2016, 104, 1459-1469.	4.7	31
11	MTHFD1 formyltetrahydrofolate synthetase deficiency, a model for the MTHFD1 R653Q variant, leads to congenital heart defects in mice. Birth Defects Research Part A: Clinical and Molecular Teratology, 2015, 103, 1031-1038.	1.6	14
12	High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice. American Journal of Clinical Nutrition, 2015, 101, 646-658.	4.7	120
13	The MTHFD1 1958C>A variant is associated with elevated C-reactive protein and body mass index in Canadian women from a premature birth cohort. Molecular Genetics and Metabolism, 2014, 111, 390-392.	1.1	6
14	Risk of congenital heart defects is influenced by genetic variation in folate metabolism. Cardiology in the Young, 2013, 23, 89-98.	0.8	24
15	Steatosis in Mice Is Associated with Gender, Folate Intake, and Expression of Genes of One-Carbon Metabolism. Journal of Nutrition, 2010, 140, 1736-1741.	2.9	88
16	The MTHFD1 p.Arg653Gln variant alters enzyme function and increases risk for congenital heart defects. Human Mutation, 2009, 30, 212-220.	2.5	89
17	Chapter 14 Mitochondrial Methylenetetrahydrofolate Dehydrogenase, Methenyltetrahydrofolate Cyclohydrolase, and Formyltetrahydrofolate Synthetases. Vitamins and Hormones, 2008, 79, 393-410.	1.7	60