
Gabi Laske

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8014156/publications.pdf Version: 2024-02-01

CARILASKE

#	Article	IF	CITATIONS
1	CRUST 5.1: A global crustal model at 5° × 5°. Journal of Geophysical Research, 1998, 103, 727-747.	3.3	905
2	The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: Implications for chemical and thermal structure. Geophysical Monograph Series, 2000, , 63-87.	0.1	432
3	A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature, 2013, 503, 238-241.	27.8	348
4	LITHO1.0: An updated crust and lithospheric model of the Earth. Journal of Geophysical Research: Solid Earth, 2014, 119, 2153-2173.	3.4	304
5	Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophysical Journal International, 2008, 174, 195-212.	2.4	251
6	Earth's Free Oscillations Excited by the 26 December 2004 Sumatra-Andaman Earthquake. Science, 2005, 308, 1139-1144.	12.6	231
7	Mantle Shear-Wave Velocity Structure Beneath the Hawaiian Hot Spot. Science, 2009, 326, 1388-1390.	12.6	190
8	Constraints on global phase velocity maps from long-period polarization data. Journal of Geophysical Research, 1996, 101, 16059-16075.	3.3	178
9	Limits on differential rotation of the inner core from an analysis of the Earth's free oscillations. Nature, 1999, 402, 66-69.	27.8	131
10	The global seismographic network surpasses its design goal. Eos, 2004, 85, 225.	0.1	125
11	Global upper-mantle structure from finite-frequency surface-wave tomography. Journal of Geophysical Research, 2006, 111, .	3.3	112
12	Global observation of off-great-circle propagation of Long-Period surface waves. Geophysical Journal International, 1995, 123, 245-259.	2.4	101
13	Underplating of the Hawaiian Swell: evidence from teleseismic receiver functions. Geophysical Journal International, 2010, 183, 313-329.	2.4	83
14	Finite-frequency effects in global surface-wave tomography. Geophysical Journal International, 2005, 163, 1087-1111.	2.4	82
15	Seismic imaging of melt in a displaced HawaiianÂplume. Nature Geoscience, 2013, 6, 657-660.	12.9	78
16	Surface-wave polarization data and global anisotropic structure. Geophysical Journal International, 1998, 132, 508-520.	2.4	67
17	Mantle P-wave velocity structure beneath the Hawaiian hotspot. Earth and Planetary Science Letters, 2011, 303, 267-280.	4.4	64
18	Anatomy of the Dead Sea Transform from lithospheric to microscopic scale. Reviews of Geophysics, 2009, 47, .	23.0	56

Gabi Laske

#	Article	IF	CITATIONS
19	Matrix autoregressive analysis of free-oscillation coupling and splitting. Geophysical Journal International, 2000, 143, 478-489.	2.4	51
20	Observation of Coriolis coupled modes below 1 mHz. Geophysical Journal International, 2000, 143, 113-118.	2.4	49
21	Structure of North American mantle constrained by simultaneous inversion of multiple-frequencySH,SS, and Love waves. Journal of Geophysical Research, 2011, 116, .	3.3	48
22	Oceanâ€Bottom Seismometer Instrument Orientations via Automated Rayleighâ€Wave Arrivalâ€Angle Measurements. Bulletin of the Seismological Society of America, 2017, 107, 691-708.	2.3	46
23	A comprehensive dispersion model of surface wave phase and group velocity for the globe. Geophysical Journal International, 2014, 199, 113-135.	2.4	44
24	Asymmetric shallow mantle structure beneath the Hawaiian Swell-evidence from Rayleigh waves recorded by the PLUME network. Geophysical Journal International, 2011, 187, 1725-1742.	2.4	43
25	Frequency-dependent polarization measurements of long-period surface waves and their implications for global phase-velocity maps. Physics of the Earth and Planetary Interiors, 1994, 84, 111-137.	1.9	41
26	Probing the Hawaiian Hot Spot With New Broadband Ocean Bottom Instruments. Eos, 2009, 90, 362-363.	0.1	37
27	Autoregressive estimation of the splitting matrix of free-oscillation multiplets. Geophysical Journal International, 2000, 141, 25-42.	2.4	34
28	Mapping the mantle transition zone beneath Hawaii from Ps receiver functions: Evidence for a hot plume and cold mantle downwellings. Earth and Planetary Science Letters, 2017, 474, 226-236.	4.4	33
29	First results from the Hawaiian SWELL Pilot Experiment. Geophysical Research Letters, 1999, 26, 3397-3400.	4.0	32
30	The Earth's free oscillations and the differential rotation of the inner core. Geodynamic Series, 2003, , 5-21.	0.1	30
31	The character of seafloor ambient noise recorded offshore New Zealand: Results from the MOANA ocean bottom seismic experiment. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	28
32	Shear wave splitting at the Hawaiian hot spot from the PLUME land and ocean bottom seismometer deployments. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	24
33	An ocean bottom seismic observatory with near realâ€time telemetry. Earth and Space Science, 2016, 3, 68-77.	2.6	20
34	Glaciohydraulic seismic tremors on an Alpine glacier. Cryosphere, 2020, 14, 287-308.	3.9	19
35	Theory and Observations: Normal Mode and Surface Wave Observations. , 2015, , 117-167.		18
36	Seismic Structure of Marine Sediments and Upper Oceanic Crust Surrounding Hawaii. Journal of Geophysical Research: Solid Earth, 2019, 124, 2038-2056.	3.4	18

GABI LASKE

#	Article	IF	CITATIONS
37	Infragravity waves and horizontal seafloor compliance. Journal of Geophysical Research: Solid Earth, 2016, 121, 260-278.	3.4	16
38	The Hawaiian SWELL pilot experiment—Evidence for lithosphere rejuvenation from ocean bottom surface wave data. , 2007, , 209-233.		15
39	Effects of crystal preferred orientation on upper-mantle flow near plate boundaries: rheologic feedbacks and seismic anisotropy. Geophysical Journal International, 2017, 210, 1481-1493.	2.4	14
40	Crevasse-induced Rayleigh-wave azimuthal anisotropy on Glacier de la Plaine Morte, Switzerland. Annals of Glaciology, 2019, 60, 96-111.	1.4	14
41	D″ observations in the Pacific from PLUME ocean bottom seismometer recordings. Geophysical Journal International, 2015, 200, 851-862.	2.4	10
42	Testing group velocity maps for Eurasia. Geophysical Journal International, 2002, 150, 639-650.	2.4	8
43	Theory and Observations â \in " Normal Modes and Surface Wave Measurements. , 2007, , 67-125.		7
44	Calibration of Differential Pressure Gauges Through In Situ Testing. Earth and Space Science, 2019, 6, 2663-2670.	2.6	7
45	Surface wave waveform anomalies at the Saudi Seismic Network. Geophysical Research Letters, 2001, 28, 4383-4386.	4.0	5
46	Why Do My Squiggles Look Funny? A Gallery of Compromised Seismic Signals. Seismological Research Letters, 2021, 92, 3873-3886.	1.9	5
47	Probabilistic estimation of structure coefficients and their uncertainties, for inner-core sensitive modes, using matrix autoregression. Geophysical Journal International, 2020, 221, 1366-1383.	2.4	3
48	Observations of Earth's Normal Modes on Broadband Ocean Bottom Seismometers. Frontiers in Earth Science, 2021, 9, .	1.8	2
49	Melt-affected ocean crust and uppermost mantle near Hawaii—clues from ambient-noise phase velocity and seafloor compliance. Geophysical Journal International, 2020, 224, 843-857.	2.4	2
50	Benchmarking Automated Rayleigh-Wave Arrival Angle Measurements for USArray Seismograms. Seismological Research Letters, 0, , .	1.9	2
51	Book Review of â€~Seismic Ambient Noise'. Geophysical Journal International, 2020, 221, 1667-1668.	2.4	0
52	Sensor orientation and noise analysis of the Kashmir-Zanskar seismic network: an appraisal from 2014 to 2020. Journal of Seismology, 0, , .	1.3	0