Berit Bungum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8013817/publications.pdf

Version: 2024-02-01

all docs

24 325 8 18 papers citations h-index g-index

24 24 24 189

times ranked

citing authors

docs citations

#	Article	IF	CITATIONS
1	Science students' critical examination of scientific information related to socioscientific issues. Science Education, 2006, 90, 632-655.	3.0	108
2	Relativity, quantum physics and philosophy in the upper secondary curriculum: challenges, opportunities and proposed approaches. Physics Education, 2014, 49, 678-684.	0.5	53
3	Quantum talk: How smallâ€group discussions may enhance students' understanding in quantum physics. Science Education, 2018, 102, 856-877.	3.0	37
4	ReleQuant – Improving teaching and learning in quantum physics through educational design research. Nordic Studies in Science Education, 2015, 11, 153-168.	0.2	26
5	What Is Light?. Science and Education, 2018, 27, 81-111.	2.7	25
6	Transferring and Transforming Technology Education: A Study of Norwegian Teachers' Perceptions of Ideas from Design & Technology. International Journal of Technology and Design Education, 2006, 16, 31-52.	2.6	11
7	A space for learning: how teachers benefit from participating in a professional community of space technology. Research in Science and Technological Education, 2013, 31, 31-48.	2.5	10
8	â€~From the cat's point of view': upper secondary physics students' reflections on Schrödinger's thought experiment. Physics Education, 2016, 51, 055009.	0.5	10
9	Design knowledge and teacher–student interactions in an inventive construction task. International Journal of Technology and Design Education, 2013, 23, 675-689.	2.6	8
10	Textbook images: how do they invite students into physics?. Physics Education, 2013, 48, 648-656.	0.5	7
11	Students' use of the interactive whiteboard during physics group work. European Journal of Engineering Education, 2015, 40, 115-127.	2.3	7
12	Observation in quantum physics: challenges for upper secondary physics students in discussing electrons as waves. Physics Education, 2019, 54, 065002.	0.5	6
13	Science and Mathematics as part of practical projects in technology and design: An analysis of challenges in realising the curriculum in Norwegian schools Nordic Studies in Science Education, 2014, 10, 3-15.	0.2	4
14	Teknologi og Design i norsk skole: Faget som «ikke ble». Norsk Pedagogisk Tidsskrift, 2004, 88, 382-394.	0.2	2
15	"Never at rest†developing a conceptual framework for descriptions of †force' in physics textbooks. Nordic Studies in Science Education, 2020, 16, 183-198.	0.2	2
16	Ski lifts, bowling balls, pipe system or waterfall? Lower secondary students' understanding of analogies for electric circuits Nordic Studies in Science Education, 2020, 16, 37-51.	0.2	2
17	Incorporating creativity in science and mathematics teaching:. Nordic Studies in Science Education, 2022, 18, 98-111.	0.2	2
18	What do quantum computing students need to know about quantum physics?. European Journal of Physics, 2022, 43, 055706.	0.6	2

#	Article	IF	CITATIONS
19	Mathematical speech and practical action: a case study of the challenges of including mathematics in a school technology project. International Journal of Mathematical Education in Science and Technology, 2014, 45, 1131-1145.	1.4	1
20	FoU i Praksis: Bruk av språk og diskusjoner for å fremme elevers forståelse i kvantefysikk gjennom digitale ressurser. Nordisk Tidsskrift for Pedagogikk Og Kritikk, 2016, 2, .	0.2	1
21	Linking Knowledge and Activities: How can Classroom Activities in Technology Reflect Professional Technological Knowledge and Practices?. Springer International Handbooks of Education, 2018, , 567-579.	0.1	1
22	â€Ingen kan bygge romferge aleneâ€⊷ Læreres utbytte av faglig etterutdanning innen romteknologi. ""You can't build the space shuttle all alone!â€⊷ How teachers benefit from partici pating in an in-service course in space technology". Nordic Studies in Science Education, 2012, 8, 213-226.	0.2	0
23	Linking Knowledge and Activities: How can Classroom Activities in Technology Reflect Professional Technological Knowledge and Practices?. Encyclopedia of Earth Sciences Series, 2016, , 1-13.	0.1	O
24	Elevator speech: Students' discussions of forces and acceleration by means of a scale in an elevator. Lumat, 2022, 10, .	0.5	0