Oliver Kohlbacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8013668/publications.pdf

Version: 2024-02-01

259 papers 17,937 citations

61 h-index 119 g-index

299 all docs

299 docs citations

times ranked

299

28247 citing authors

#	Article	IF	CITATIONS
1	Charting a dynamic DNA methylation landscape of the human genome. Nature, 2013, 500, 477-481.	27.8	1,168
2	Feature-based molecular networking in the GNPS analysis environment. Nature Methods, 2020, 17, 905-908.	19.0	650
3	Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients. Cancer Cell, 2018, 34, 211-224.e6.	16.8	623
4	OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics, 2014, 30, 3310-3316.	4.1	566
5	NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Research, 2011, 39, W362-W367.	14.5	559
6	OpenMS – An open-source software framework for mass spectrometry. BMC Bioinformatics, 2008, 9, 163.	2.6	556
7	Visualization of omics data for systems biology. Nature Methods, 2010, 7, S56-S68.	19.0	548
8	OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nature Methods, 2016, 13, 741-748.	19.0	537
9	SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nature Immunology, 2021, 22, 74-85.	14.5	490
10	Sequence co-evolution gives 3D contacts and structures of protein complexes. ELife, 2014, 3, .	6.0	452
11	Transcriptional and Epigenetic Dynamics during Specification of Human Embryonic Stem Cells. Cell, 2013, 153, 1149-1163.	28.9	419
12	Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Research, 2005, 33, 5799-5808.	14.5	388
13	MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Bioinformatics, 2006, 22, 1158-1165.	4.1	290
14	From hype to reality: data science enabling personalized medicine. BMC Medicine, 2018, 16, 150.	5.5	278
15	MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction. BMC Bioinformatics, 2009, 10, 274.	2.6	264
16	YLocâ€"an interpretable web server for predicting subcellular localization. Nucleic Acids Research, 2010, 38, W497-W502.	14.5	263
17	TOPPthe OpenMS proteomics pipeline. Bioinformatics, 2007, 23, e191-e197.	4.1	249
18	Photo-cross-linking and high-resolution mass spectrometry for assignment of RNA-binding sites in RNA-binding proteins. Nature Methods, 2014 , 11 , 1064 - 1070 .	19.0	218

#	Article	IF	CITATIONS
19	Simultaneous alignment of short reads against multiple genomes. Genome Biology, 2009, 10, R98.	9.6	215
20	WIPI proteins: essential PtdIns3 <i>P</i> effectors at the nascent autophagosome. Journal of Cell Science, 2015, 128, 207-17.	2.0	214
21	Tools for Label-free Peptide Quantification. Molecular and Cellular Proteomics, 2013, 12, 549-556.	3.8	198
22	Reentrant Condensation of Proteins in Solution Induced by Multivalent Counterions. Physical Review Letters, 2008, 101, 148101.	7.8	184
23	Immunoinformatics and epitope prediction in the age of genomic medicine. Genome Medicine, 2015, 7, 119.	8.2	178
24	The mzIdentML Data Standard for Mass Spectrometry-Based Proteomics Results. Molecular and Cellular Proteomics, 2012, 11, M111.014381-1-M111.014381-10.	3.8	175
25	Dissecting neural differentiation regulatory networks through epigenetic footprinting. Nature, 2015, 518, 355-359.	27.8	172
26	Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays. Nucleic Acids Research, 2013, 41, 9764-9778.	14.5	161
27	The immunopeptidomic landscape of ovarian carcinomas. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9942-E9951.	7.1	152
28	Recognizing millions of consistently unidentified spectra across hundreds of shotgun proteomics datasets. Nature Methods, 2016, 13, 651-656.	19.0	147
29	An Automated Pipeline for High-Throughput Label-Free Quantitative Proteomics. Journal of Proteome Research, 2013, 12, 1628-1644.	3.7	146
30	Going from where to whyâ€"interpretable prediction of protein subcellular localization. Bioinformatics, 2010, 26, 1232-1238.	4.1	133
31	The mzTab Data Exchange Format: Communicating Mass-spectrometry-based Proteomics and Metabolomics Experimental Results to a Wider Audience. Molecular and Cellular Proteomics, 2014, 13, 2765-2775.	3.8	130
32	HLA Ligand Atlas: a benign reference of HLA-presented peptides to improve T-cell-based cancer immunotherapy., 2021, 9, e002071.		126
33	SherLoc2: A High-Accuracy Hybrid Method for Predicting Subcellular Localization of Proteins. Journal of Proteome Research, 2009, 8, 5363-5366.	3.7	122
34	SherLoc: high-accuracy prediction of protein subcellular localization by integrating text and protein sequence data. Bioinformatics, 2007, 23, 1410-1417.	4.1	113
35	Multi-omics discovery of exome-derived neoantigens in hepatocellular carcinoma. Genome Medicine, 2019, 11, 28.	8.2	107
36	Universality of protein reentrant condensation in solution induced by multivalent metal ions. Proteins: Structure, Function and Bioinformatics, 2010, 78, 3450-3457.	2.6	106

#	Article	IF	Citations
37	Genetic variation in human drug-related genes. Genome Medicine, 2017, 9, 117.	8.2	104
38	The antigenic landscape of multiple myeloma: mass spectrometry (re)defines targets for T-cell–based immunotherapy. Blood, 2015, 126, 1203-1213.	1.4	103
39	Interplay of pH and Binding of Multivalent Metal Ions: Charge Inversion and Reentrant Condensation in Protein Solutions. Journal of Physical Chemistry B, 2013, 117, 5777-5787.	2.6	97
40	SANDPUMA: ensemble predictions of nonribosomal peptide chemistry reveal biosynthetic diversity across <i>Actinobacteria </i> . Bioinformatics, 2017, 33, 3202-3210.	4.1	89
41	Plants Release Precursors of Histone Deacetylase Inhibitors to Suppress Growth of Competitors. Plant Cell, 2015, 27, 3175-3189.	6.6	86
42	OpenMS – A platform for reproducible analysis of mass spectrometry data. Journal of Biotechnology, 2017, 261, 142-148.	3.8	85
43	Novel Formulation of Nonlocal Electrostatics. Physical Review Letters, 2004, 93, 108104.	7.8	83
44	Time-resolved characterization of cAMP/PKA-dependent signaling reveals that platelet inhibition is a concerted process involving multiple signaling pathways. Blood, 2014, 123, e1-e10.	1.4	80
45	Retention Time Prediction Improves Identification in Nontargeted Lipidomics Approaches. Analytical Chemistry, 2015, 87, 7698-7704.	6.5	80
46	SVMHC: a server for prediction of MHC-binding peptides. Nucleic Acids Research, 2006, 34, W194-W197.	14.5	79
47	POPISK: T-cell reactivity prediction using support vector machines and string kernels. BMC Bioinformatics, 2011, 12, 446.	2.6	79
48	Induction of neoantigen-reactive T cells from healthy donors. Nature Protocols, 2019, 14, 1926-1943.	12.0	78
49	Absolute Myoglobin Quantitation in Serum by Combining Two-Dimensional Liquid Chromatographyâ^'Electrospray Ionization Mass Spectrometry and Novel Data Analysis Algorithms. Journal of Proteome Research, 2006, 5, 414-421.	3.7	77
50	Integrated modeling of the major events in the MHC class I antigen processing pathway. Protein Science, 2005, 14, 2132-2140.	7.6	76
51	Personalized peptide vaccine-induced immune response associated with long-term survival of a metastatic cholangiocarcinoma patient. Journal of Hepatology, 2016, 65, 849-855.	3.7	7 5
52	TOPPView: An Open-Source Viewer for Mass Spectrometry Data. Journal of Proteome Research, 2009, 8, 3760-3763.	3.7	74
53	Automated Label-free Quantification of Metabolites from Liquid Chromatography–Mass Spectrometry Data. Molecular and Cellular Proteomics, 2014, 13, 348-359.	3.8	74
54	Prediction of dual protein targeting to plant organelles. New Phytologist, 2009, 183, 224-236.	7. 3	73

#	Article	IF	CITATIONS
55	Data Integration for Future Medicine (DIFUTURE). Methods of Information in Medicine, 2018, 57, e57-e65.	1.2	73
56	Reduced Rate of Inpatient Hospital Admissions in 18 German University Hospitals During the COVID-19 Lockdown. Frontiers in Public Health, 2020, 8, 594117.	2.7	73
57	Statistical learning of peptide retention behavior in chromatographic separations: a new kernel-based approach for computational proteomics. BMC Bioinformatics, 2007, 8, 468.	2.6	70
58	GeneTrailExpress: a web-based pipeline for the statistical evaluation of microarray experiments. BMC Bioinformatics, 2008, 9, 552.	2.6	69
59	Activation of lymphoma-associated MyD88 mutations via allostery-induced TIR-domain oligomerization. Blood, 2014, 124, 3896-3904.	1.4	69
60	PIA: An Intuitive Protein Inference Engine with a Web-Based User Interface. Journal of Proteome Research, 2015, 14, 2988-2997.	3.7	69
61	MetaRoute: fast search for relevant metabolic routes for interactive network navigation and visualization. Bioinformatics, 2008, 24, 2108-2109.	4.1	68
62	OpenMS and TOPP: Open Source Software for LC-MS Data Analysis. Methods in Molecular Biology, 2011, 696, 353-367.	0.9	68
63	Large-scale discovery of protein interactions at residue resolution using co-evolution calculated from genomic sequences. Nature Communications, 2021, 12, 1396.	12.8	68
64	The mzQuantML Data Standard for Mass Spectrometry–based Quantitative Studies in Proteomics. Molecular and Cellular Proteomics, 2013, 12, 2332-2340.	3.8	66
65	Structural and Functional Characterization of the Bacterial Type III Secretion Export Apparatus. PLoS Pathogens, 2016, 12, e1006071.	4.7	66
66	Copper oxide nanoparticle toxicity profiling using untargeted metabolomics. Particle and Fibre Toxicology, 2015, 13, 49.	6.2	65
67	MetaProSIP: Automated Inference of Stable Isotope Incorporation Rates in Proteins for Functional Metaproteomics. Journal of Proteome Research, 2015, 14, 619-627.	3.7	64
68	BALL - biochemical algorithms library 1.3. BMC Bioinformatics, 2010, 11, 531.	2.6	62
69	Distributed Analytics on Sensitive Medical Data: The Personal Health Train. Data Intelligence, 2020, 2, 96-107.	1.5	62
70	Food monitoring: Screening of the geographical origin of white asparagus using FT-NIR and machine learning. Food Control, 2019, 104, 318-325.	5.5	61
71	Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies. BMC Systems Biology, 2009, 3, 5.	3.0	59
72	The MoSGrid Science Gateway – A Complete Solution for Molecular Simulations. Journal of Chemical Theory and Computation, 2014, 10, 2232-2245.	5.3	58

#	Article	IF	Citations
73	The HLA ligandome landscape of chronic myeloid leukemia delineates novel T-cell epitopes for immunotherapy. Blood, 2019, 133, 550-565.	1.4	57
74	In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics. Journal of Proteomics, 2017, 150, 170-182.	2.4	56
75	Mapping the HLA Ligandome of Colorectal Cancer Reveals an Imprint of Malignant Cell Transformation. Cancer Research, 2018, 78, 4627-4641.	0.9	56
76	The mzIdentML Data Standard Version 1.2, Supporting Advances in Proteome Informatics. Molecular and Cellular Proteomics, 2017, 16, 1275-1285.	3.8	55
77	A Combinatorial Approach to Protein Docking with Flexible Side Chains. Journal of Computational Biology, 2002, 9, 597-612.	1.6	54
78	A computational platform for high-throughput analysis of RNA sequences and modifications by mass spectrometry. Nature Communications, 2020, 11, 926.	12.8	54
79	BALLView: a tool for research and education in molecular modeling. Bioinformatics, 2006, 22, 365-366.	4.1	53
80	<i>De novo</i> peptide sequencing by tandem MS using complementary CID and electron transfer dissociation. Electrophoresis, 2009, 30, 3736-3747.	2.4	53
81	Machine learning competition in immunology – Prediction of HLA class I binding peptides. Journal of Immunological Methods, 2011, 374, 1-4.	1.4	53
82	BALLDock/SLICK: A New Method for Protein-Carbohydrate Docking. Journal of Chemical Information and Modeling, 2008, 48, 1616-1625.	5.4	52
83	A novel algorithm for detecting differentially regulated paths based on gene set enrichment analysis. Bioinformatics, 2009, 25, 2787-2794.	4.1	51
84	TOPPAS: A Graphical Workflow Editor for the Analysis of High-Throughput Proteomics Data. Journal of Proteome Research, 2012, 11, 3914-3920.	3.7	50
85	Whither systems medicine?. Experimental and Molecular Medicine, 2018, 50, e453-e453.	7.7	49
86	Implications for selectivity of 3,4-diarylquinolinones as p38αMAP kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1431-1435.	2.2	48
87	Learning from Heterogeneous Data Sources: An Application in Spatial Proteomics. PLoS Computational Biology, 2016, 12, e1004920.	3.2	47
88	A Fully Computational Model for Predicting Percutaneous Drug Absorption. Journal of Chemical Information and Modeling, 2006, 46, 424-429.	5.4	46
89	Automated scaffold selection for enzyme design. Proteins: Structure, Function and Bioinformatics, 2009, 77, 74-83.	2.6	45
90	Probabilistic Consensus Scoring Improves Tandem Mass Spectrometry Peptide Identification. Journal of Proteome Research, 2011, 10, 3332-3343.	3.7	45

#	Article	IF	Citations
91	A proteomics sample metadata representation for multiomics integration and big data analysis. Nature Communications, 2021, 12, 5854.	12.8	45
92	Computational modeling of the sugar–lectin interaction. Advanced Drug Delivery Reviews, 2004, 56, 437-457.	13.7	43
93	LC-MSsim – a simulation software for liquid chromatography mass spectrometry data. BMC Bioinformatics, 2008, 9, 423.	2.6	42
94	The role of phosphorylatable serine residues in the DNA-binding domain of Arabidopsis bZIP transcription factors. European Journal of Cell Biology, 2010, 89, 175-183.	3.6	42
95	qcML: An Exchange Format for Quality Control Metrics from Mass Spectrometry Experiments. Molecular and Cellular Proteomics, 2014, 13, 1905-1913.	3.8	42
96	HLA ligandome analysis of primary chronic lymphocytic leukemia (CLL) cells under lenalidomide treatment confirms the suitability of lenalidomide for combination with T-cell-based immunotherapy. Oncolmmunology, 2018, 7, e1316438.	4.6	42
97	Electrostatic potentials of proteins in water: a structured continuum approach. Bioinformatics, 2007, 23, e99-e103.	4.1	41
98	Using Atom Mapping Rules for an Improved Detection of Relevant Routes in Weighted Metabolic Networks. Journal of Computational Biology, 2008, 15, 565-576.	1.6	41
99	Designing string-of-beads vaccines with optimal spacers. Genome Medicine, 2016, 8, 9.	8.2	41
100	FLASHDeconv: Ultrafast, High-Quality Feature Deconvolution for Top-Down Proteomics. Cell Systems, 2020, 10, 213-218.e6.	6.2	41
101	BALLView: An object-oriented molecular visualization and modeling framework. Journal of Computer-Aided Molecular Design, 2005, 19, 791-800.	2.9	40
102	SLICK â ⁻ Scoring and Energy Functions for Proteinâ ⁻ Carbohydrate Interactions. Journal of Chemical Information and Modeling, 2006, 46, 1635-1642.	5.4	40
103	Optimal de novo Design of MRM Experiments for Rapid Assay Development in Targeted Proteomics. Journal of Proteome Research, 2010, 9, 2696-2704.	3.7	40
104	Virtual screening and experimental validation reveal novel small-molecule inhibitors of 14-3-3 protein–protein interactions. Chemical Communications, 2013, 49, 8468.	4.1	40
105	A Single Sign-On Infrastructure for Science Gateways on a Use Case for Structural Bioinformatics. Journal of Grid Computing, 2012, 10, 769-790.	3.9	39
106	Binding Pocket Optimization by Computational Protein Design. PLoS ONE, 2012, 7, e52505.	2.5	39
107	Comparative immunopeptidomics of humans and their pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13268-13272.	7.1	38
108	Development of a fluorescence-based assay for screening of modulators of human Organic Anion Transporter 1B3 (OATP1B3). European Journal of Pharmaceutics and Biopharmaceutics, 2006, 62, 39-43.	4.3	38

#	Article	IF	Citations
109	BNDB – The Biochemical Network Database. BMC Bioinformatics, 2007, 8, 367.	2.6	36
110	Improving Peptide Identification in Proteome Analysis by a Two-Dimensional Retention Time Filtering Approach. Journal of Proteome Research, 2009, 8, 4109-4115.	3.7	36
111	Combining Structure and Sequence Information Allows Automated Prediction of Substrate Specificities within Enzyme Families. PLoS Computational Biology, 2010, 6, e1000636.	3.2	36
112	Universal peptide vaccines – Optimal peptide vaccine design based on viral sequence conservation. Vaccine, 2011, 29, 8745-8753.	3.8	35
113	Competing Salt Effects on Phase Behavior of Protein Solutions: Tailoring of Protein Interaction by the Binding of Multivalent Ions and Charge Screening. Journal of Physical Chemistry B, 2014, 118, 11365-11374.	2.6	35
114	MHCquant: Automated and Reproducible Data Analysis for Immunopeptidomics. Journal of Proteome Research, 2019, 18, 3876-3884.	3.7	35
115	Testing and Validation of Computational Methods for Mass Spectrometry. Journal of Proteome Research, 2016, 15, 809-814.	3.7	34
116	HIGH-ACCURACY PEAK PICKING OF PROTEOMICS DATA USING WAVELET TECHNIQUES., 2005,,.		33
117	A Mathematical Framework for the Selection of an Optimal Set of Peptides for Epitope-Based Vaccines. PLoS Computational Biology, 2008, 4, e1000246.	3.2	32
118	OptiTopea web server for the selection of an optimal set of peptides for epitope-based vaccines. Nucleic Acids Research, 2009, 37, W617-W622.	14.5	32
119	Workflows for automated downstream data analysis and visualization in largeâ€scale computational mass spectrometry. Proteomics, 2015, 15, 1443-1447.	2.2	32
120	EpiToolKit—a web-based workbench for vaccine design. Bioinformatics, 2015, 31, 2211-2213.	4.1	32
121	FRED 2: an immunoinformatics framework for Python. Bioinformatics, 2016, 32, 2044-2046.	4.1	32
122	Identification of Ppar $\langle i \rangle \hat{l}^3 \langle i \rangle$ -modulated miRNA hubs that target the fibrotic tumor microenvironment. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 454-463.	7.1	32
123	BiNA: A Visual Analytics Tool for Biological Network Data. PLoS ONE, 2014, 9, e87397.	2.5	31
124	Food Authentication: Small-Molecule Profiling as a Tool for the Geographic Discrimination of German White Asparagus. Journal of Agricultural and Food Chemistry, 2018, 66, 13328-13339.	5.2	31
125	Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics. BMC Bioinformatics, 2008, 9, 443.	2.6	30
126	Novel Machine Learning Methods for MHC Class I Binding Prediction. Lecture Notes in Computer Science, 2010, , 98-109.	1.3	30

#	Article	IF	Citations
127	Profile and Molecular Modeling of 3-(Indole-3-yl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole-2,5dione (1) as a Highly Selective VEGF-R2/3 Inhibitor. Journal of Medicinal Chemistry, 2006, 49, 7549-7553.	6.4	29
128	LFQProfiler and RNPxl: Open-Source Tools for Label-Free Quantification and Protein–RNA Cross-Linking Integrated into Proteome Discoverer. Journal of Proteome Research, 2016, 15, 3441-3448.	3.7	29
129	Analysis of Genomic DNA from Medieval Plague Victims Suggests Long-Term Effect of <i>Yersinia pestis</i> on Human Immunity Genes. Molecular Biology and Evolution, 2021, 38, 4059-4076.	8.9	29
130	In melanoma, <scp>H</scp> ippo signaling is affected by copy number alterations and <scp>YAP</scp> 1 overexpression impairs patient survival. Pigment Cell and Melanoma Research, 2014, 27, 671-673.	3.3	28
131	OpenMS and TOPP: Open Source Software for LC-MS Data Analysis. Methods in Molecular Biology, 2010, 604, 201-211.	0.9	27
132	Lectin-sugar interaction. FEBS Journal, 2002, 269, 1518-1524.	0.2	26
133	SNEP: SNP-derived Epitope Prediction program for minor H antigens. Immunogenetics, 2005, 57, 816-820.	2.4	26
134	Comparison of different sample preparation techniques for NIR screening and their influence on the geographical origin determination of almonds (Prunus dulcis MILL.). Food Control, 2020, 115, 107302.	5.5	26
135	Analysis of protein–RNA interactions in CRISPR proteins and effector complexes by UV-induced cross-linking and mass spectrometry. Methods, 2015, 89, 138-148.	3.8	25
136	Data Management of Sensitive Human Proteomics Data: Current Practices, Recommendations, and Perspectives for the Future. Molecular and Cellular Proteomics, 2021, 20, 100071.	3.8	25
137	A statistical learning approach to the modeling of chromatographic retention of oligonucleotides incorporating sequence and secondary structure data. Nucleic Acids Research, 2007, 35, 4195-4202.	14.5	23
138	DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats. Nucleic Acids Research, 2015, 43, gkv1053.	14.5	23
139	Scaling home automation to public buildings: A distributed multiuser setup for OpenHAB 2., 2017, , .		23
140	SmartPeak Automates Targeted and Quantitative Metabolomics Data Processing. Analytical Chemistry, 2020, 92, 15968-15974.	6.5	23
141	Application of displacement chromatography for the proteome analysis of a human plasma protein fraction. Journal of Chromatography A, 2010, 1217, 3321-3329.	3.7	22
142	An unusually high substitution rate in transplant-associated BK polyomavirus in vivo is further concentrated in HLA-C-bound viral peptides. PLoS Pathogens, 2018, 14, e1007368.	4.7	22
143	Challenges of big data integration in the life sciences. Analytical and Bioanalytical Chemistry, 2019, 411, 6791-6800.	3.7	22
144	Multiple Layers of Phospho-Regulation Coordinate Metabolism and the Cell Cycle in Budding Yeast. Frontiers in Cell and Developmental Biology, 2019, 7, 338.	3.7	22

#	Article	IF	Citations
145	Analysis of protein-DNA interactions in chromatin by UV induced cross-linking and mass spectrometry. Nature Communications, 2020, 11, 5250.	12.8	22
146	High-accuracy peak picking of proteomics data using wavelet techniques. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2006, , 243-54.	0.7	22
147	From sequence to structure and back again: approaches for predicting protein-DNA binding. Proteome Science, 2004, 2, 3.	1.7	21
148	Structure–Activity Relationships in Chromatography: Retention Prediction of Oligonucleotides with Support Vector Regression. Angewandte Chemie - International Edition, 2006, 45, 7009-7012.	13.8	21
149	EpiToolKit—a web server for computational immunomics. Nucleic Acids Research, 2008, 36, W519-W522.	14.5	21
150	KIRMES: kernel-based identification of regulatory modules in euchromatic sequences. Bioinformatics, 2009, 25, 2126-2133.	4.1	21
151	Protein (multi-)location prediction: utilizing interdependencies via a generative model. Bioinformatics, 2015, 31, i365-i374.	4.1	21
152	Food authentication: Determination of the geographical origin of almonds (Prunus dulcis Mill.) via near-infrared spectroscopy. Microchemical Journal, 2021, 160, 105702.	4.5	21
153	FRED—a framework for T-cell epitope detection. Bioinformatics, 2009, 25, 2758-2759.	4.1	20
154	Carfilzomib alters the HLA-presented peptidome of myeloma cells and impairs presentation of peptides with aromatic C-termini. Blood Cancer Journal, 2016, 6, e411-e411.	6.2	20
155	Untargeted Metabolomics Reveals Molecular Effects of Ketogenic Diet on Healthy and Tumor Xenograft Mouse Models. International Journal of Molecular Sciences, 2019, 20, 3873.	4.1	20
156	EPIFANY: A Method for Efficient High-Confidence Protein Inference. Journal of Proteome Research, 2020, 19, 1060-1072.	3.7	20
157	Genome-wide study of a Neolithic Wartberg grave community reveals distinct HLA variation and hunter-gatherer ancestry. Communications Biology, 2021, 4, 113.	4.4	20
158	Computational proteomics pitfalls and challenges: HavanaBioinfo 2012 Workshop report. Journal of Proteomics, 2013, 87, 134-138.	2.4	19
159	Mass-Spectrometry-Based Proteomics Reveals Organ-Specific Expression Patterns To Be Used as Forensic Evidence. Journal of Proteome Research, 2016, 15, 182-192.	3.7	19
160	Determination of the Geographical Origin of <i>Asparagus officinalis</i> L. by ¹ H NMR Spectroscopy. Journal of Agricultural and Food Chemistry, 2020, 68, 14353-14363.	5.2	19
161	Multiple Instance Learning Allows MHC Class II Epitope Predictions Across Alleles. Lecture Notes in Computer Science, 2008, , 210-221.	1.3	19
162	The future of metabolomics in ELIXIR. F1000Research, 2017, 6, 1649.	1.6	19

#	Article	IF	Citations
163	Towards <i>in silico</i> design of epitope-based vaccines. Expert Opinion on Drug Discovery, 2009, 4, 1047-1060.	5.0	18
164	Covalent attachment of pyridoxal-phosphate derivatives to 14-3-3 proteins. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1051-3; author reply E1054.	7.1	18
165	Distinct transcriptional changes in non-small cell lung cancer patients associated with multi-antigenic RNActive® CV9201 immunotherapy. Oncolmmunology, 2016, 5, e1249560.	4.6	18
166	Improving global feature detectabilities through scan range splitting for untargeted metabolomics by high-performance liquid chromatography-Orbitrap mass spectrometry. Analytica Chimica Acta, 2016, 930, 13-22.	5.4	18
167	qPortal: A platform for data-driven biomedical research. PLoS ONE, 2018, 13, e0191603.	2.5	18
168	BN++ – A Biological Information System. Journal of Integrative Bioinformatics, 2006, 3, 148-161.	1.5	17
169	Exploiting physico-chemical properties in string kernels. BMC Bioinformatics, 2010, 11, S7.	2.6	17
170	Fluorescence-based imaging of autophagy progression by human WIPI protein detection. Methods, 2015, 75, 69-78.	3.8	17
171	Clinical and non-targeted metabolomic profiling of homozygous carriers of Transcription Factor 7-like 2 variant rs7903146. Scientific Reports, 2014, 4, 5296.	3.3	17
172	The Endometrial Transcription Landscape of MRKH Syndrome. Frontiers in Cell and Developmental Biology, 2020, 8, 572281.	3.7	17
173	DIAproteomics: A Multifunctional Data Analysis Pipeline for Data-Independent Acquisition Proteomics and Peptidomics. Journal of Proteome Research, 2021, 20, 3758-3766.	3.7	17
174	Structure prediction of protein complexes by an NMR-based protein docking algorithm. Journal of Biomolecular NMR, 2001, 20, 15-21.	2.8	16
175	No Longer Confidential: Estimating the Confidence of Individual Regression Predictions. PLoS ONE, 2012, 7, e48723.	2.5	16
176	Displacement chromatography as first separating step in online two-dimensional liquid chromatography coupled to mass spectrometry analysis of a complex protein sampleâ€"The proteome of neutrophils. Journal of Chromatography A, 2012, 1232, 288-294.	3.7	16
177	Population-specific design of de-immunized protein biotherapeutics. PLoS Computational Biology, 2018, 14, e1005983.	3.2	16
178	Understanding the constitutive presentation of MHC class I immunopeptidomes in primary tissues. IScience, 2022, 25, 103768.	4.1	16
179	Epitope prediction algorithms for peptide-based vaccine design. Proceedings, 2003, 2, 17-26.	0.1	16
180	Population Genetics and Signatures of Selection in Early Neolithic European Farmers. Molecular Biology and Evolution, 2022, 39, .	8.9	16

#	Article	IF	Citations
181	Food fingerprinting: Mass spectrometric determination of the cocoa shell content (Theobroma cacao) Tj ETQq1	1 0,784314 8.2	rgBT /Over
182	Annotation and initial evaluation of a large annotated German oncological corpus. JAMIA Open, 2021, 4, ooab025.	2.0	14
183	The bifunctional role of aconitase in <i><scp>S</scp>treptomyces viridochromogenes</i> <scp>T</scp> $\tilde{A}^{1}/4494$. Environmental Microbiology, 2012, 14, 3203-3219.	3.8	13
184	Identification of HCMV-derived T cell epitopes in seropositive individuals through viral deletion models. Journal of Experimental Medicine, 2020, 217, .	8.5	13
185	A community proposal to integrate proteomics activities in ELIXIR. F1000Research, 2017, 6, 875.	1.6	13
186	Exploring protein-protein interactions at the proteome level. Structure, 2022, 30, 462-475.	3.3	13
187	From the desktop to the grid: scalable bioinformatics via workflow conversion. BMC Bioinformatics, 2016, 17, 127.	2.6	12
188	A meta-analysis of HLA peptidome composition in different hematological entities: entity-specific dividing lines and "pan-leukemia―antigens. Oncotarget, 2017, 8, 43915-43924.	1.8	12
189	The COVID-19 Data Exchange Platform of the German University Medicine. Studies in Health Technology and Informatics, 2022, , .	0.3	12
190	SIGNIFICANTLY IMPROVED PREDICTION OF SUBCELLULAR LOCALIZATION BY INTEGRATING TEXT AND PROTEIN SEQUENCE DATA. , 2005, , .		11
191	ClinOmicsTrailbc: a visual analytics tool for breast cancer treatment stratification. Bioinformatics, 2019, 35, 5171-5181.	4.1	11
192	The future of metabolomics in ELIXIR. F1000Research, 2017, 6, 1649.	1.6	11
193	DIAMetAlyzer allows automated false-discovery rate-controlled analysis for data-independent acquisition in metabolomics. Nature Communications, 2022, 13, 1347.	12.8	11
194	Dithiothreitol (DTT) Acts as a Specific, UV-inducible Cross-linker in Elucidation of Protein–RNA Interactions*. Molecular and Cellular Proteomics, 2015, 14, 3196-3210.	3.8	10
195	Nephron Toxicity Profiling via Untargeted Metabolome Analysis Employing a High Performance Liquid Chromatography-Mass Spectrometry-based Experimental and Computational Pipeline. Journal of Biological Chemistry, 2015, 290, 19121-19132.	3.4	10
196	ballaxy: web services for structural bioinformatics. Bioinformatics, 2015, 31, 121-122.	4.1	10
197	OpenPepXL: An Open-Source Tool for Sensitive Identification of Cross-Linked Peptides in XL-MS. Molecular and Cellular Proteomics, 2020, 19, 2157-2168.	3.8	10
198	Integrative analysis of cancerâ€related data using CAP. FASEB Journal, 2004, 18, 1465-1467.	0.5	9

#	Article	IF	Citations
199	In silico design of targeted SRM-based experiments. BMC Bioinformatics, 2012, 13, S8.	2.6	9
200	Blocked Inverted Indices for Exact Clustering of Large Chemical Spaces. Journal of Chemical Information and Modeling, 2014, 54, 2395-2401.	5.4	9
201	CADDSuite – a workflow-enabled suite of open-source tools for drug discovery. Journal of Cheminformatics, 2012, 4, .	6.1	8
202	Performance Studies on Distributed Virtual Screening. BioMed Research International, 2014, 2014, 1-7.	1.9	8
203	Drug <scp>T</scp> arget <scp>I</scp> nspector: An assistance tool for patient treatment stratification. International Journal of Cancer, 2016, 138, 1765-1776.	5.1	8
204	Proteins and Molecular Pathways Relevant for the Malignant Properties of Tumor-Initiating Pancreatic Cancer Cells. Cells, 2020, 9, 1397.	4.1	8
205	Application of displacement chromatography for the analysis of a lipid raft proteome. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 309-314.	2.3	7
206	Improved particleâ€packed HPLC/MS microchips for proteomic analysis. Journal of Separation Science, 2010, 33, 3283-3291.	2.5	7
207	miHA-Match: Computational detection of tissue-specific minor histocompatibility antigens. Journal of Immunological Methods, 2012, 386, 94-100.	1.4	7
208	Phosphoproteomics of short-term hedgehog signaling in human medulloblastoma cells. Cell Communication and Signaling, 2020, 18, 99.	6.5	7
209	Tracing incorporation of heavy water into proteins for species-specific metabolic activity in complex communities. Journal of Proteomics, 2020, 222, 103791.	2.4	7
210	Genetic authentication: Differentiation of hazelnut cultivars using polymorphic sites of the chloroplast genome. Food Control, 2021, 130, 108344.	5.5	7
211	Interpretation of the DOME Recommendations for Machine Learning in Proteomics and Metabolomics. Journal of Proteome Research, 2022, 21, 1204-1207.	3.7	7
212	ImmunoNodes – graphical development of complex immunoinformatics workflows. BMC Bioinformatics, 2017, 18, 242.	2.6	6
213	Patient Empowerment During the COVID-19 Pandemic by Ensuring Safe and Fast Communication of Test Results: Implementation and Performance of a Tracking System. Journal of Medical Internet Research, 2021, 23, e27348.	4.3	6
214	Metabolomics Data Processing Using OpenMS. Methods in Molecular Biology, 2020, 2104, 49-60.	0.9	6
215	T-cell epitope prediction based on self-tolerance. , 2011, , .		5
216	PTMeta: Increasing identification rates of modified peptides using modification prescanning and metaâ€analysis. Proteomics, 2013, 13, 1042-1051.	2.2	5

#	Article	IF	Citations
217	Managing Expectations When Publishing Tools and Methods for Computational Proteomics. Journal of Proteome Research, 2015, 14, 2002-2004.	3.7	5
218	Reproducible Scientific Workflows for High Performance and Cloud Computing. , 2019, , .		5
219	BALL: Biochemical Algorithms Library. Lecture Notes in Computer Science, 1999, , 330-344.	1.3	5
220	Integer Linear Programming in Computational Biology. Lecture Notes in Computer Science, 2009, , 199-218.	1.3	5
221	Efficient privacy-preserving whole-genome variant queries. Bioinformatics, 2022, 38, 2202-2210.	4.1	5
222	Bioinformatics for Qualitative and Quantitative Proteomics. Methods in Molecular Biology, 2011, 719, 331-349.	0.9	4
223	No evidence of viral genomes in wholeâ€transcriptome sequencing of three melanoma metastases. Experimental Dermatology, 2011, 20, 766-768.	2.9	4
224	On Comparison of SimTandem with State-of-the-Art Peptide Identification Tools, Efficiency of Precursor Mass Filter and Dealing with Variable Modifications. Journal of Integrative Bioinformatics, 2013, 10, 1-15.	1.5	4
225	Favorable immune signature in CLL patients, defined by antigen-specific T-cell responses, might prevent second skin cancers. Leukemia and Lymphoma, 2018, 59, 1949-1958.	1.3	4
226	ClinVAP: a reporting strategy from variants to therapeutic options. Bioinformatics, 2020, 36, 2316-2317.	4.1	4
227	Algorithms for the Automated Absolute Quantification of Diagnostic Markers in Complex Proteomics Samples. Lecture Notes in Computer Science, 2005, , 151-162.	1.3	4
228	Comparison of displacement versus gradient mode for separation of a complex protein mixture by anion-exchange chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 901, 34-40.	2.3	3
229	Intuitive Web-Based Experimental Design for High-Throughput Biomedical Data. BioMed Research International, 2015, 2015, 1-8.	1.9	3
230	Novel Visual Metaphors for Multivariate Networks. Lecture Notes in Computer Science, 2014, , 127-150.	1.3	3
231	The de.NBI / ELIXIR-DE training platform - Bioinformatics training in Germany and across Europe within ELIXIR. F1000Research, 2019, 8, 1877.	1.6	3
232	Modeling Protein-Protein and Protein-DNA Docking., 0,, 601-650.		2
233	Analysis of MHC-Peptide Binding Using Amino Acid Property-Based Decision Rules. Lecture Notes in Computer Science, 2005, , 446-453.	1.3	2
234	Workflow-enhanced conformational analysis of guanidine zinc complexes via a science gateway. Studies in Health Technology and Informatics, 2012, 175, 142-51.	0.3	2

#	Article	lF	Citations
235	Visualising Metabolic Pathways and Networks: Past, Present, Future. , 2022, , 237-267.		2
236	MoSGrid $\hat{a}\in$ " a molecular simulation grid as a new tool in computational chemistry, biology and material science. Journal of Cheminformatics, 2011, 3, .	6.1	1
237	Rebuilding KEGG Maps: Algorithms and Benefits. , 2014, , .		1
238	Differential Enzymatic ¹⁶ O/ ¹⁸ O Labeling for the Detection of Cross-Linked Nucleic Acid–Protein Heteroconjugates. Analytical Chemistry, 2017, 89, 11208-11213.	6.5	1
239	Enabling ad-hoc reuse of private data repositories through schema extraction. Journal of Biomedical Semantics, $2020,11,6.$	1.6	1
240	Abstract B124: Personalized peptide vaccination based on patient-individual tumor-specific variants induces T-cell responses in pediatric patients. Cancer Immunology Research, 2019, 7, B124-B124.	3.4	1
241	The de.NBI / ELIXIR-DE training platform - Bioinformatics training in Germany and across Europe within ELIXIR. F1000Research, 2019, 8, 1877.	1.6	1
242	A Statistical Comparison of SimTandem with State-of-the-Art Peptide Identification Tools. Advances in Intelligent Systems and Computing, 2013, , 101-109.	0.6	1
243	Abstract CT057: Phase I trial to evaluate the feasibility and safety of an individualized peptide vaccine of unmodified cancer antigens: PepIVAC-01., 2018,,.		1
244	Interactive Visualization for Large-Scale Multi-factorial Research Designs. Lecture Notes in Computer Science, 2019, , 75-84.	1.3	1
245	De novo identification of maximally deregulated subnetworks based on multi-omics data with DeRegNet. BMC Bioinformatics, 2022, 23, 139.	2.6	1
246	On comparison of SimTandem with state-of-the-art peptide identification tools, efficiency of precursor mass filter and dealing with variable modifications. Journal of Integrative Bioinformatics, 2013, 10, 228.	1.5	1
247	TOPP goes Rapid The OpenMS Proteomics Pipeline in a Grid-Enabled Web Portal. , 2010, , .		0
248	Molecular simulation grid. Journal of Cheminformatics, 2011, 3, .	6.1	0
249	A framework and workflow system for virtual screening and molecular docking. Journal of Cheminformatics, 2011, 3, .	6.1	0
250	miHA-match. , 2012, , .		0
251	Network-based interactive navigation and analysis of large biological datasets. IT - Information Technology, 2015, 57, 37-48.	0.9	0
252	BALL-SNPgpâ€"from genetic variants toward computational diagnostics. Bioinformatics, 2016, 32, 1888-1890.	4.1	0

#	Article	IF	CITATIONS
253	Challenges in Large-Scale Computational Mass Spectrometry and Multiomics. Journal of Proteome Research, 2016, 15, 681-682.	3.7	O
254	BOOTABLE: Bioinformatics Benchmark Tool Suite. , 2019, , .		0
255	Interplay Between the Immune System and Colorectal Carcinoma - Towards Tumor-Specific Peptide-Based Vaccination for Any HLA-Type. Blood, 2015, 126, 1027-1027.	1.4	0
256	Abstract A113: iVacALL: A personalized peptide-vaccination design platform for pediatric acute lymphoblastic leukemia patients based on patient-individual tumor-specific variants., 2016,,.		0
257	Abstract A112: Mapping the impact of proteasome inhibitor therapy on the antigenic landscape of multiple myeloma: Identifying robust targets for T cell immunotherapy. , 2016, , .		O
258	Unique Alterations in the Immunopeptidome of Colorectal Cancer Reflect Specific Transformations in Cancer-Associated Signaling Pathways and Reveal Tumor-Specific HLA-Ligand Modulations. Blood, 2016, 128, 862-862.	1.4	0
259	The HLA Ligandome Landscape of Chronic Myeloid Leukemia Delineates Novel T-Cell Epitopes for Immunotherapy. Blood, 2018, 132, 4243-4243.	1.4	0