Patrice G Guyenet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8013556/publications.pdf Version: 2024-02-01

		9264	16650
172	17,071	74	123
papers	citations	h-index	g-index
183	183	183	8254
all docs	docs citations	times ranked	citing authors

PATRICE C. CHVENET

#	Article	lF	CITATIONS
1	Rostral ventrolateral medulla, retropontine region and autonomic regulations. Autonomic Neuroscience: Basic and Clinical, 2022, 237, 102922.	2.8	14
2	Respiratory alkalosis provokes spike-wave discharges in seizure-prone rats. ELife, 2022, 11, .	6.0	11
3	Adrenergic C1 neurons monitor arterial blood pressure and determine the sympathetic response to hemorrhage. Cell Reports, 2022, 38, 110480.	6.4	12
4	A brainstem peptide system activated at birth protects postnatal breathing. Nature, 2021, 589, 426-430.	27.8	31
5	Silent hypoxaemia in COVIDâ€19 patients. Journal of Physiology, 2021, 599, 1057-1065.	2.9	64
6	Vagus nerve stimulation activates two distinct neuroimmune circuits converging in the spleen to protect mice from kidney injury. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	55
7	The dynamic activity of C1 neurons determines the level of blood pressure during hemorrhage in freely behaving rats. FASEB Journal, 2021, 35, .	0.5	0
8	Neuroprosthetic device maintains blood pressure after spinal cord injury. Nature, 2021, 590, 223-224.	27.8	2
9	Differential Contribution of the Retrotrapezoid Nucleus and C1 Neurons to Active Expiration and Arousal in Rats. Journal of Neuroscience, 2020, 40, 8683-8697.	3.6	29
10	Neuronal Networks in Hypertension. Hypertension, 2020, 76, 300-311.	2.7	54
11	Contribution of the Retrotrapezoid Nucleus and Carotid Bodies to Hypercapnia- and Hypoxia-induced Arousal from Sleep. Journal of Neuroscience, 2019, 39, 9725-9737.	3.6	30
12	The Retrotrapezoid Nucleus: Central Chemoreceptor and Regulator of Breathing Automaticity. Trends in Neurosciences, 2019, 42, 807-824.	8.6	129
13	Sodium Is Detected by the OVLT to Regulate Sympathetic Tone. Neuron, 2019, 101, 3-5.	8.1	4
14	Contribution of retrotrapezoid nucleus and carotid bodies to asphyxiaâ€induced arousal in rats. FASEB Journal, 2019, 33, 733.6.	0.5	1
15	Breathing regulation and blood gas homeostasis after near complete lesions of the retrotrapezoid nucleus in adult rats. Journal of Physiology, 2018, 596, 2521-2545.	2.9	47
16	C1 neurons: a nodal point for stress?. Experimental Physiology, 2018, 103, 332-336.	2.0	28
17	Interdependent feedback regulation of breathing by the carotid bodies and the retrotrapezoid nucleus. Journal of Physiology, 2018, 596, 3029-3042.	2.9	40
18	Rostral Ventrolateral Medulla and Hypertension. Hypertension, 2018, 72, 559-566.	2.7	53

#	Article	IF	CITATIONS
19	Ablation of neuromedin B (NMB)â€expressing neurons located within retrotrapezoid nucleus (RTN) reduces the central respiratory chemoreflex (CRC) selectively in conscious rats. FASEB Journal, 2018, 32, 894.10.	0.5	0
20	Putative Mechanism of Salt-Dependent Neurogenic Hypertension. Hypertension, 2017, 69, 20-22.	2.7	8
21	Blood Pressure Regulation by the Rostral Ventrolateral Medulla in Conscious Rats: Effects of Hypoxia, Hypercapnia, Baroreceptor Denervation, and Anesthesia. Journal of Neuroscience, 2017, 37, 4565-4583.	3.6	57
22	C1 neurons mediate a stress-induced anti-inflammatory reflex in mice. Nature Neuroscience, 2017, 20, 700-707.	14.8	142
23	Neuromedin B Expression Defines the Mouse Retrotrapezoid Nucleus. Journal of Neuroscience, 2017, 37, 11744-11757.	3.6	61
24	Central Network Dynamics Regulating Visceral and Humoral Functions. Journal of Neuroscience, 2017, 37, 10848-10854.	3.6	8
25	Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes. Journal of Clinical Investigation, 2016, 126, 1939-1952.	8.2	225
26	Proton detection and breathing regulation by the retrotrapezoid nucleus. Journal of Physiology, 2016, 594, 1529-1551.	2.9	73
27	Nalcn Is a "Leak" Sodium Channel That Regulates Excitability of Brainstem Chemosensory Neurons and Breathing. Journal of Neuroscience, 2016, 36, 8174-8187.	3.6	66
28	Is plasticity within the retrotrapezoid nucleus responsible for the recovery of the setâ€point after carotid body denervation in rats?. Journal of Physiology, 2016, 594, 3371-3390.	2.9	16
29	Sciatic nerve stimulation activates the retrotrapezoid nucleus in anesthetized rats. Journal of Neurophysiology, 2016, 116, 2081-2092.	1.8	16
30	Afferent and efferent connections of C1 cells with spinal cord or hypothalamic projections in mice. Brain Structure and Function, 2016, 221, 4027-4044.	2.3	36
31	Stateâ€dependent control of breathing by the retrotrapezoid nucleus. Journal of Physiology, 2015, 593, 2909-2926.	2.9	72
32	The retrotrapezoid nucleus stimulates breathing by releasing glutamate in adult conscious mice. European Journal of Neuroscience, 2015, 42, 2271-2282.	2.6	31
33	Regulation of breathing by CO ₂ requires the proton-activated receptor GPR4 in retrotrapezoid nucleus neurons. Science, 2015, 348, 1255-1260.	12.6	190
34	Hypoxia Silences Retrotrapezoid Nucleus Respiratory Chemoreceptors via Alkalosis. Journal of Neuroscience, 2015, 35, 527-543.	3.6	60
35	Selective optogenetic stimulation of the retrotrapezoid nucleus in sleeping rats activates breathing without changing blood pressure or causing arousal or sighs. Journal of Applied Physiology, 2015, 118, 1491-1501.	2.5	29
36	Neural Control of Breathing and CO2 Homeostasis. Neuron, 2015, 87, 946-961.	8.1	340

#	Article	IF	CITATIONS
37	Regulation of Breathing and Autonomic Outflows by Chemoreceptors. , 2014, 4, 1511-1562.		248
38	The orexinergic neurons receive synaptic input from C1 cells in rats. Journal of Comparative Neurology, 2014, 522, 3834-3846.	1.6	39
39	Vesicular glutamate transporter 2 is required for the respiratory and parasympathetic activation produced by optogenetic stimulation of catecholaminergic neurons in the rostral ventrolateral medulla of mice <i>in vivo</i> . European Journal of Neuroscience, 2014, 39, 98-106.	2.6	35
40	Optogenetic Stimulation of Adrenergic C1 Neurons Causes Sleep State–Dependent Cardiorespiratory Stimulation and Arousal with Sighs in Rats. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1301-1310.	5.6	77
41	Cholinergic neurons in the mouse rostral ventrolateral medulla target sensory afferent areas. Brain Structure and Function, 2013, 218, 455-475.	2.3	53
42	Chemoreception and asphyxia-induced arousal. Respiratory Physiology and Neurobiology, 2013, 188, 333-343.	1.6	36
43	The respiratory chemoreception conundrum: Light at the end of the tunnel?. Brain Research, 2013, 1511, 126-137.	2.2	26
44	Phox2b-Expressing Retrotrapezoid Neurons Are Intrinsically Responsive to H ⁺ and CO ₂ . Journal of Neuroscience, 2013, 33, 7756-7761.	3.6	86
45	Selective Optogenetic Activation of Rostral Ventrolateral Medullary Catecholaminergic Neurons Produces Cardiorespiratory Stimulation in Conscious Mice. Journal of Neuroscience, 2013, 33, 3164-3177.	3.6	95
46	Monosynaptic Glutamatergic Activation of Locus Coeruleus and Other Lower Brainstem Noradrenergic Neurons by the C1 Cells in Mice. Journal of Neuroscience, 2013, 33, 18792-18805.	3.6	50
47	C1 neurons: the body's EMTs. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R187-R204.	1.8	219
48	Optogenetic Stimulation of C1 and Retrotrapezoid Nucleus Neurons Causes Sleep State–Dependent Cardiorespiratory Stimulation and Arousal in Rats. Hypertension, 2013, 61, 835-841.	2.7	53
49	Glutamatergic Neurotransmission between the C1 Neurons and the Parasympathetic Preganglionic Neurons of the Dorsal Motor Nucleus of the Vagus. Journal of Neuroscience, 2013, 33, 1486-1497.	3.6	54
50	TASK-2 Channels Contribute to pH Sensitivity of Retrotrapezoid Nucleus Chemoreceptor Neurons. Journal of Neuroscience, 2013, 33, 16033-16044.	3.6	98
51	Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature, 2012, 484, 105-109.	27.8	547
52	Preâ€Bötzinger complex receives glutamatergic innervation from galaninergic and other retrotrapezoid nucleus neurons. Journal of Comparative Neurology, 2012, 520, 1047-1061.	1.6	86
53	The Retrotrapezoid Nucleus and Breathing. Advances in Experimental Medicine and Biology, 2012, 758, 115-122.	1.6	42
54	Optogenetic stimulation of C1 neurons activates breathing in mice. FASEB Journal, 2012, 26, .	0.5	0

#	Article	IF	CITATIONS
55	Regulation of visceral sympathetic tone by A5 noradrenergic neurons in rodents. Journal of Physiology, 2011, 589, 903-917.	2.9	41
56	Orexin A activates retrotrapezoid neurons in mice. Respiratory Physiology and Neurobiology, 2011, 175, 283-287.	1.6	52
57	Control of Breathing by Raphe Obscurus Serotonergic Neurons in Mice. Journal of Neuroscience, 2011, 31, 1981-1990.	3.6	140
58	Phox2b-Expressing Neurons of the Parafacial Region Regulate Breathing Rate, Inspiration, and Expiration in Conscious Rats. Journal of Neuroscience, 2011, 31, 16410-16422.	3.6	113
59	Cardiorespiratory Integration. , 2011, , 180-201.		5
60	Retrotrapezoid nucleus and parafacial respiratory group. Respiratory Physiology and Neurobiology, 2010, 173, 244-255.	1.6	85
61	Central respiratory chemoreception. Journal of Comparative Neurology, 2010, 518, 3883-3906.	1.6	199
62	Anesthetic Activation of Central Respiratory Chemoreceptor Neurons Involves Inhibition of a THIK-1-Like Background K+ Current. Journal of Neuroscience, 2010, 30, 9324-9334.	3.6	67
63	Photostimulation of Phox2b Medullary Neurons Activates Cardiorespiratory Function in Conscious Rats. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1184-1194.	5.6	80
64	Central CO ₂ chemoreception and integrated neural mechanisms of cardiovascular and respiratory control. Journal of Applied Physiology, 2010, 108, 995-1002.	2.5	109
65	Photostimulation of Retrotrapezoid Nucleus Phox2b-Expressing Neurons <i>In Vivo</i> Produces Long-Lasting Activation of Breathing in Rats. Journal of Neuroscience, 2009, 29, 5806-5819.	3.6	188
66	Commentaries on Viewpoint: Central chemoreception is a complex system function that involves multiple brain stem sites. Journal of Applied Physiology, 2009, 106, 1467-1470.	2.5	6
67	Retrotrapezoid nucleus, respiratory chemosensitivity and breathing automaticity. Respiratory Physiology and Neurobiology, 2009, 168, 59-68.	1.6	87
68	Galanin is a selective marker of the retrotrapezoid nucleus in rats. Journal of Comparative Neurology, 2009, 512, 373-383.	1.6	49
69	Location and properties of respiratory neurones with putative intrinsic bursting properties in the rat <i>in situ</i> . Journal of Physiology, 2009, 587, 3175-3188.	2.9	33
70	Activation of the retrotrapezoid nucleus by posterior hypothalamic stimulation. Journal of Physiology, 2009, 587, 5121-5138.	2.9	50
71	Photostimulation of channelrhodopsinâ€⊋ expressing ventrolateral medullary neurons increases sympathetic nerve activity and blood pressure in rats. Journal of Physiology, 2009, 587, 5613-5631.	2.9	101
72	Acid sensitivity and ultrastructure of the retrotrapezoid nucleus in Phox2bâ€EGFP transgenic mice. Journal of Comparative Neurology, 2009, 517, 69-86.	1.6	115

#	Article	IF	CITATIONS
73	Retrotrapezoid nucleus and central chemoreception. Journal of Physiology, 2008, 586, 2043-2048.	2.9	131
74	Selective lesion of retrotrapezoid Phox2bâ€expressing neurons raises the apnoeic threshold in rats. Journal of Physiology, 2008, 586, 2975-2991.	2.9	119
75	The Retrotrapezoid Nucleus and Central Chemoreception. Advances in Experimental Medicine and Biology, 2008, 605, 327-332.	1.6	32
76	Bötzinger Expiratory-Augmenting Neurons and the Parafacial Respiratory Group. Journal of Neuroscience, 2008, 28, 2506-2515.	3.6	78
77	The 2008 Carl Ludwig Lecture: retrotrapezoid nucleus, CO ₂ homeostasis, and breathing automaticity. Journal of Applied Physiology, 2008, 105, 404-416.	2.5	136
78	TASK Channels Determine pH Sensitivity in Select Respiratory Neurons But Do Not Contribute to Central Respiratory Chemosensitivity. Journal of Neuroscience, 2007, 27, 14049-14058.	3.6	167
79	Serotonergic Neurons Activate Chemosensitive Retrotrapezoid Nucleus Neurons by a pH-Independent Mechanism. Journal of Neuroscience, 2007, 27, 14128-14138.	3.6	127
80	Transneuronal mapping of the CNS network controlling sympathetic outflow to the rat thymus. Autonomic Neuroscience: Basic and Clinical, 2007, 131, 9-20.	2.8	38
81	GABAergic Pump Cells of Solitary Tract Nucleus Innervate Retrotrapezoid Nucleus Chemoreceptors. Journal of Neurophysiology, 2007, 98, 374-381.	1.8	41
82	Activation of 5-Hydroxytryptamine Type 3 Receptor-Expressing C-Fiber Vagal Afferents Inhibits Retrotrapezoid Nucleus Chemoreceptors in Rats. Journal of Neurophysiology, 2007, 98, 3627-3637.	1.8	30
83	Inhibitory input from slowly adapting lung stretch receptors to retrotrapezoid nucleus chemoreceptors. Journal of Physiology, 2007, 580, 285-300.	2.9	66
84	The sympathetic control of blood pressure. Nature Reviews Neuroscience, 2006, 7, 335-346.	10.2	1,535
85	Peripheral chemoreceptor inputs to retrotrapezoid nucleus (RTN) CO2-sensitive neurons in rats. Journal of Physiology, 2006, 572, 503-523.	2.9	273
86	Central chemoreceptors and sympathetic vasomotor outflow. Journal of Physiology, 2006, 577, 369-386.	2.9	119
87	Water deprivation activates a glutamatergic projection from the hypothalamic paraventricular nucleus to the rostral ventrolateral medulla. Journal of Comparative Neurology, 2006, 494, 673-685.	1.6	117
88	Afferent and efferent connections of the rat retrotrapezoid nucleus. Journal of Comparative Neurology, 2006, 499, 64-89.	1.6	224
89	Expression of Phox2b by Brainstem Neurons Involved in Chemosensory Integration in the Adult Rat. Journal of Neuroscience, 2006, 26, 10305-10314.	3.6	311
90	Purinergic P2 Receptors Modulate Excitability But Do Not Mediate pH Sensitivity of RTN Respiratory Chemoreceptors. Journal of Neuroscience, 2006, 26, 7230-7233.	3.6	71

#	Article	IF	CITATIONS
91	Peripheral chemoreceptor inputs to retrotrapezoid nucleus (RTN) chemoreceptor neurons. FASEB Journal, 2006, 20, A788.	0.5	0
92	Re: Retrotrapezoid nucleus: a litmus test for the identification of central chemoreceptors. Experimental Physiology, 2005, 90, 253-257.	2.0	102
93	Re: Homing in on the specific phenotype(s) of central respiratory chemoreceptors. Experimental Physiology, 2005, 90, 266-268.	2.0	0
94	Coexpression of vesicular glutamate transporter-3 and γ-aminobutyric acidergic markers in rat rostral medullary raphe and intermediolateral cell column. Journal of Comparative Neurology, 2005, 492, 477-494.	1.6	75
95	Regulation of Ventral Surface Chemoreceptors by the Central Respiratory Pattern Generator. Journal of Neuroscience, 2005, 25, 8938-8947.	3.6	159
96	Re: Homing in on the specific phenotype(s) of central respiratory chemoreceptors. Experimental Physiology, 2005, 90, 266-268.	2.0	10
97	Authors' response to G. B. Richerson's commentary. Experimental Physiology, 2005, 90, 257-257.	2.0	0
98	Respiratory control by ventral surface chemoreceptor neurons in rats. Nature Neuroscience, 2004, 7, 1360-1369.	14.8	486
99	Glutamatergic neuronal projections from the marginal layer of the rostral ventral medulla to the respiratory centers in rats. Journal of Comparative Neurology, 2004, 473, 73-85.	1.6	56
100	GABAergic and glycinergic presympathetic neurons of rat medulla oblongata identified by retrograde transport of pseudorabies virus and in situ hybridization. Journal of Comparative Neurology, 2004, 479, 257-270.	1.6	68
101	Detection of amino acid and peptide transmitters in physiologically identified brainstem cardiorespiratory neurons. Autonomic Neuroscience: Basic and Clinical, 2004, 114, 1-10.	2.8	22
102	Inspiratory augmenting bulbospinal neurons express both glutamatergic and enkephalinergic phenotypes. Journal of Comparative Neurology, 2003, 455, 113-124.	1.6	73
103	A group of glutamatergic interneurons expressing high levels of both neurokinin-1 receptors and somatostatin identifies the region of the pre-Bötzinger complex. Journal of Comparative Neurology, 2003, 455, 499-512.	1.6	197
104	Fos expression by glutamatergic neurons of the solitary tract nucleus after phenylephrine-induced hypertension in rats. Journal of Comparative Neurology, 2003, 460, 525-541.	1.6	79
105	Hypothalamic orexin (hypocretin) neurons express vesicular glutamate transporters VGLUT1 or VGLUT2. Journal of Comparative Neurology, 2003, 465, 593-603.	1.6	221
106	Cardiorespiratory neurons of the rat ventrolateral medulla contain TASK-1 and TASK-3 channel mRNA. Respiratory Physiology and Neurobiology, 2003, 138, 19-35.	1.6	45
107	Baro-Activated Neurons With Pulse-Modulated Activity in the Rat Caudal Ventrolateral Medulla Express GAD67 mRNA. Journal of Neurophysiology, 2003, 89, 1265-1277.	1.8	78
108	Neurokinin-1 Receptor-Expressing Cells of the Ventral Respiratory Group Are Functionally Heterogeneous and Predominantly Glutamatergic. Journal of Neuroscience, 2002, 22, 3806-3816.	3.6	122

#	Article	IF	CITATIONS
109	Depressor and Tachypneic Responses to Chemical Stimulation of the Ventral Respiratory Group Are Reduced by Ablation of Neurokinin-1 Receptor-Expressing Neurons. Journal of Neuroscience, 2002, 22, 3755-3764.	3.6	79
110	Serotonergic Raphe Neurons Express TASK Channel Transcripts and a TASK-Like pH- and Halothane-Sensitive K ⁺ Conductance. Journal of Neuroscience, 2002, 22, 1256-1265.	3.6	144
111	Vesicular glutamate transporter DNPI/VGLUT2 mRNA is present in C1 and several other groups of brainstem catecholaminergic neurons. Journal of Comparative Neurology, 2002, 444, 191-206.	1.6	207
112	Vesicular glutamate transporter DNPI/VGLUT2 is expressed by both C1 adrenergic and nonaminergic presympathetic vasomotor neurons of the rat medulla. Journal of Comparative Neurology, 2002, 444, 207-220.	1.6	172
113	Opioid Signalling In The Rat Rostral Ventrolateral Medulla. Clinical and Experimental Pharmacology and Physiology, 2002, 29, 238-242.	1.9	36
114	The Baroreflex And Beyond: Control Of Sympathetic Vasomotor Tone By Gabaergic Neurons In The Ventrolateral Medulla. Clinical and Experimental Pharmacology and Physiology, 2002, 29, 514-521.	1.9	168
115	Pre-Bötzinger Neurons With Preinspiratory Discharges "In Vivo―Express NK1 Receptors in the Rat. Journal of Neurophysiology, 2001, 86, 438-446.	1.8	112
116	?-opioid receptors are present in functionally identified sympathoexcitatory neurons in the rat rostral ventrolateral medulla. Journal of Comparative Neurology, 2001, 433, 34-47.	1.6	37
117	Neurokinin-1 receptor-immunoreactive neurons of the ventral respiratory group in the rat. Journal of Comparative Neurology, 2001, 434, 128-146.	1.6	208
118	Preproenkephalin mRNA is expressed by C1 and non-C1 barosensitive bulbospinal neurons in the rostral ventrolateral medulla of the rat. Journal of Comparative Neurology, 2001, 435, 111-126.	1.6	75
119	Regulation of sympathetic tone and arterial pressure by rostral ventrolateral medulla after depletion of C1 cells in rat. Journal of Physiology, 2000, 529, 221-236.	2.9	127
120	Prototypical Imidazoline-1 Receptor Ligand Moxonidine Activates Alpha2-Adrenoceptors in Bulbospinal Neurons of the RVL. Journal of Neurophysiology, 2000, 83, 766-776.	1.8	17
121	Neural structures that mediate sympathoexcitation during hypoxia. Respiration Physiology, 2000, 121, 147-162.	2.7	202
122	Properties of C1 and other ventrolateral medullary neurones with hypothalamic projections in the rat. Journal of Physiology, 1999, 517, 477-494.	2.9	118
123	Distribution of glutamic acid decarboxylase mRNA-containing neurons in rat medulla projecting to thoracic spinal cord in relation to monoaminergic brainstem neurons. Journal of Comparative Neurology, 1999, 407, 367-380.	1.6	132
124	Evidence for glycinergic respiratory neurons: Bïį½ztzinger neurons express mRNA for glycinergic transporter 2. Journal of Comparative Neurology, 1999, 407, 583-597.	1.6	131
125	Location and electrophysiological characterization of rostral medullary adrenergic neurons that contain neuropeptide Y mRNA in rat medulla. , 1999, 415, 482-500.		93
126	Distribution of glutamic acid decarboxylase mRNA ontaining neurons in rat medulla projecting to thoracic spinal cord in relation to monoaminergic brainstem neurons. Journal of Comparative Neurology, 1999, 407, 367-380.	1.6	1

#	Article	IF	CITATIONS
127	Antagonist precipitated clonidine withdrawal in rat: Effects on locus coeruleus neurons, sympathetic nerves and cardiovascular parameters. Journal of the Autonomic Nervous System, 1998, 71, 85-95.	1.9	4
128	Pre- and Postsynaptic Inhibitory Actions of Methionine-Enkephalin on Identified Bulbospinal Neurons of the Rat RVL. Journal of Neurophysiology, 1998, 80, 2003-2014.	1.8	55
129	Voltage-Dependent Calcium Currents in Bulbospinal Neurons of Neonatal Rat Rostral Ventrolateral Medulla: Modulation by α ₂ -Adrenergic Receptors. Journal of Neurophysiology, 1998, 79, 583-594.	1.8	40
130	Atipamezole-precipitated clonidine withdrawal induces c-Fos expression in rat central nervous system. Brain Research, 1997, 764, 81-92.	2.2	4
131	Identification of C1 presympathetic neurons in rat rostral ventrolateral medulla by juxtacellular labeling in vivo. , 1997, 387, 524-536.		240
132	Distribution of ?2A-adrenergic receptor-like immunoreactivity in the rat central nervous system. , 1996, 372, 111-134.		216
133	Distribution of ?2C-adrenergic receptor-like immunoreactivity in the rat central nervous system. Journal of Comparative Neurology, 1996, 372, 135-165.	1.6	266
134	Chapter 8 Role of medulla oblongata in generation of sympathetic and vagal outflows. Progress in Brain Research, 1996, 107, 127-144.	1.4	129
135	Mechanism of the Hypotensive Action of Anandamide in Anesthetized Rats. Hypertension, 1996, 28, 682-686.	2.7	132
136	Angiotensin II Decreases a Resting K + Conductance in Rat Bulbospinal Neurons of the C1 Area. Circulation Research, 1996, 78, 274-282.	4.5	74
137	Effects of morphine and morphine withdrawal on adrenergic neurons of the rat rostral ventrolateral medulla. Brain Research, 1995, 676, 245-257.	2.2	60
138	Sympatholytic effect of clonidine depends on the respiratory phase in rat splanchnic nerve. Journal of the Autonomic Nervous System, 1995, 53, 82-86.	1.9	7
139	Alpha2A-adrenergic receptors are present in lower brainstem catecholaminergic and serotonergic neurons innervating spinal cord. Brain Research, 1994, 638, 285-294.	2.2	101
140	Autonomic areas of rat brain exhibit increased Fos-like immunoreactivity during opiate withdrawal in rats. Brain Research, 1993, 624, 19-28.	2.2	122
141	Ventrolateral medulla and sympathetic chemoreflex in the rat. Brain Research, 1993, 609, 174-184.	2.2	127
142	Central respiratory modulation of facial motoneurons in rats. Neuroscience Letters, 1993, 151, 224-228.	2.1	13
143	Rostral ventrolateral medullary neurons projecting to locus coeruleus have cardiorespiratory inputs. Brain Research, 1992, 598, 67-75.	2.2	29
144	Morphology of rostral medullary neurons with intrinsic pacemaker activity in the rat. Brain Research, 1991, 556, 61-70.	2.2	19

#	Article	IF	CITATIONS
145	Respiratory modulation of pre- and postganglionic lumbar vasomotor sympathetic neurons in the rat. Neuroscience Letters, 1990, 119, 148-152.	2.1	38
146	Excitation of rostral medullary pacemaker neurons with putative sympathoexcitatory function by cyclic AMP and β-adrenoceptor agonists â€~in vitro'. Brain Research, 1990, 511, 30-40.	2.2	32
147	Retrotrapezoid nucleus in the rat. Neuroscience Letters, 1989, 101, 138-142.	2.1	49
148	Effects of vasopressin and other neuropeptides on rostral medullary sympathoexcitatory neurons â€~in vitro'. Brain Research, 1989, 492, 261-270.	2.2	60
149	Chapter 7 Sympathoexcitatory neurons of the rostroventrolateral medulla and the origin of the sympathetic vasomotor tone. Progress in Brain Research, 1989, 81, 105-116.	1.4	137
150	Rostral ventrolateral medullary neurons with intrinsic pacemaker properties are not catecholaminergic. Brain Research, 1988, 451, 345-349.	2.2	83
151	Sympathoexcitatory neurons of rostral ventrolateral medulla exhibit pacemaker properties in the presence of a glutamate-receptor antagonist. Brain Research, 1988, 438, 23-40.	2.2	143
152	Reticulospinal pacemaker neurons of the rat rostral ventrolateral medulla with putative sympathoexcitatory function: an intracellular study in vitro. Brain Research, 1988, 442, 229-239.	2.2	116
153	Projections of nucleus paragigantocellularis lateralis to locus coeruleus and other structures in rat. Brain Research, 1987, 406, 171-184.	2.2	113
154	Role of excitatory amino acids in rat vagal and sympathetic baroreflexes. Brain Research, 1987, 407, 272-284.	2.2	240
155	Localization of brain angiotensinogen mRNA by hybridization histochemistry. Molecular Brain Research, 1987, 2, 149-158.	2.3	106
156	Afferent and efferent connections of the A5 noradrenergic cell group in the rat. Journal of Comparative Neurology, 1987, 261, 529-542.	1.6	243
157	Unit activity in nucleus paragigantocellularis lateralis during cerebral ischemia in the rat. Brain Research, 1986, 364, 301-314.	2.2	64
158	Effect of clonidine and Î ³ -Aminobutyric acid on the discharges of medullo-spinal sympathoexcitatory neurons in the rat. Brain Research, 1986, 368, 1-17.	2.2	153
159	Comparative effects of sciatic nerve stimulation, blood pressure, and morphine on the activity of A5 and A6 pontine noradrenergic neurons. Brain Research, 1985, 327, 191-201.	2.2	28
160	Electrophysiological properties of spinally-projecting A5 noradrenergic neurons. Brain Research, 1984, 303, 15-29.	2.2	89
161	Baroreceptor-mediated inhibition of A5 noradrenergic neurons. Brain Research, 1984, 303, 31-40.	2.2	61
162	An electrophysiological study of the forebrain projection of nucleus commissuralis: Preliminary identification of presumed A2 catecholaminergic neurons. Brain Research, 1983, 263, 211-222.	2.2	43

#	Article	IF	CITATIONS
163	Blockade of long-term potentiation by phencyclidine and $\ddot{l}f$ opiates in the hippocampus in vivo and in vitro. Brain Research, 1983, 280, 127-138.	2.2	83
164	Elimination of long-term potentiation in the hippocampus by phencyclidine and ketamine. Brain Research, 1983, 258, 159-164.	2.2	101
165	Effect of phencyclidines on hippocampal pyramidal cells. Brain Research, 1982, 252, 343-352.	2.2	30
166	Action of phencyclidine on synaptic transmission in the hippocampus. Brain Research, 1982, 236, 289-304.	2.2	25
167	Inhibition of sympathetic preganglionic discharges by epinephrine and $\hat{I}\pm$ -methylepinephrine. Brain Research, 1982, 235, 271-283.	2.2	61
168	Non-dopaminergic nigrostriatal pathway. Brain Research, 1981, 213, 291-305.	2.2	70
169	The coeruleospinal noradrenergic neurons: Anatomical and electrophysiological studies in the rat. Brain Research, 1980, 189, 121-133.	2.2	263
170	Regional differences in the sensitivity of cholinergic neurons to dopaminergic drugs and quipazine in the rat striatum. Brain Research, 1977, 136, 487-500.	2.2	46
171	Effect of sodium, hemicholinium-3 and antiparkinson drugs on [14C]acetylcholine synthesis and [3H]choline uptake in rat striatal synaptosomes. Brain Research, 1973, 62, 523-529.	2.2	89
172	Distribution of glutamic acid decarboxylase mRNA-containing neurons in rat medulla projecting to thoracic spinal cord in relation to monoaminergic brainstem neurons. , 0, .		1