Patrice G Guyenet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8013556/publications.pdf

Version: 2024-02-01

172 papers

17,071 citations

9264 74 h-index 123 g-index

183 all docs $\frac{183}{\text{docs citations}}$

183 times ranked 8254 citing authors

#	Article	IF	CITATIONS
1	The sympathetic control of blood pressure. Nature Reviews Neuroscience, 2006, 7, 335-346.	10.2	1,535
2	Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature, 2012, 484, 105-109.	27.8	547
3	Respiratory control by ventral surface chemoreceptor neurons in rats. Nature Neuroscience, 2004, 7, 1360-1369.	14.8	486
4	Neural Control of Breathing and CO2 Homeostasis. Neuron, 2015, 87, 946-961.	8.1	340
5	Expression of Phox2b by Brainstem Neurons Involved in Chemosensory Integration in the Adult Rat. Journal of Neuroscience, 2006, 26, 10305-10314.	3.6	311
6	Peripheral chemoreceptor inputs to retrotrapezoid nucleus (RTN) CO2-sensitive neurons in rats. Journal of Physiology, 2006, 572, 503-523.	2.9	273
7	Distribution of ?2C-adrenergic receptor-like immunoreactivity in the rat central nervous system. Journal of Comparative Neurology, 1996, 372, 135-165.	1.6	266
8	The coeruleospinal noradrenergic neurons: Anatomical and electrophysiological studies in the rat. Brain Research, 1980, 189, 121-133.	2.2	263
9	Regulation of Breathing and Autonomic Outflows by Chemoreceptors. , 2014, 4, 1511-1562.		248
10	Afferent and efferent connections of the A5 noradrenergic cell group in the rat. Journal of Comparative Neurology, 1987, 261, 529-542.	1.6	243
11	Role of excitatory amino acids in rat vagal and sympathetic baroreflexes. Brain Research, 1987, 407, 272-284.	2.2	240
12	Identification of C1 presympathetic neurons in rat rostral ventrolateral medulla by juxtacellular labeling in vivo., 1997, 387, 524-536.		240
13	Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes. Journal of Clinical Investigation, 2016, 126, 1939-1952.	8.2	225
14	Afferent and efferent connections of the rat retrotrapezoid nucleus. Journal of Comparative Neurology, 2006, 499, 64-89.	1.6	224
15	Hypothalamic orexin (hypocretin) neurons express vesicular glutamate transporters VGLUT1 or VGLUT2. Journal of Comparative Neurology, 2003, 465, 593-603.	1.6	221
16	C1 neurons: the body's EMTs. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R187-R204.	1.8	219
17	Distribution of ?2A-adrenergic receptor-like immunoreactivity in the rat central nervous system. , 1996, 372, 111-134.		216
18	Neurokinin-1 receptor-immunoreactive neurons of the ventral respiratory group in the rat. Journal of Comparative Neurology, 2001, 434, 128-146.	1.6	208

#	Article	IF	CITATIONS
19	Vesicular glutamate transporter DNPI/VGLUT2 mRNA is present in C1 and several other groups of brainstem catecholaminergic neurons. Journal of Comparative Neurology, 2002, 444, 191-206.	1.6	207
20	Neural structures that mediate sympathoexcitation during hypoxia. Respiration Physiology, 2000, 121, 147-162.	2.7	202
21	Central respiratory chemoreception. Journal of Comparative Neurology, 2010, 518, 3883-3906.	1.6	199
22	A group of glutamatergic interneurons expressing high levels of both neurokinin-1 receptors and somatostatin identifies the region of the pre-Bötzinger complex. Journal of Comparative Neurology, 2003, 455, 499-512.	1.6	197
23	Regulation of breathing by CO ₂ requires the proton-activated receptor GPR4 in retrotrapezoid nucleus neurons. Science, 2015, 348, 1255-1260.	12.6	190
24	Photostimulation of Retrotrapezoid Nucleus Phox2b-Expressing Neurons <i>In Vivo</i> Produces Long-Lasting Activation of Breathing in Rats. Journal of Neuroscience, 2009, 29, 5806-5819.	3.6	188
25	Vesicular glutamate transporter DNPI/VGLUT2 is expressed by both C1 adrenergic and nonaminergic presympathetic vasomotor neurons of the rat medulla. Journal of Comparative Neurology, 2002, 444, 207-220.	1.6	172
26	The Baroreflex And Beyond: Control Of Sympathetic Vasomotor Tone By Gabaergic Neurons In The Ventrolateral Medulla. Clinical and Experimental Pharmacology and Physiology, 2002, 29, 514-521.	1.9	168
27	TASK Channels Determine pH Sensitivity in Select Respiratory Neurons But Do Not Contribute to Central Respiratory Chemosensitivity. Journal of Neuroscience, 2007, 27, 14049-14058.	3.6	167
28	Regulation of Ventral Surface Chemoreceptors by the Central Respiratory Pattern Generator. Journal of Neuroscience, 2005, 25, 8938-8947.	3.6	159
29	Effect of clonidine and \hat{I}^3 -Aminobutyric acid on the discharges of medullo-spinal sympathoexcitatory neurons in the rat. Brain Research, 1986, 368, 1-17.	2.2	153
30	Serotonergic Raphe Neurons Express TASK Channel Transcripts and a TASK-Like pH- and Halothane-Sensitive K ⁺ Conductance. Journal of Neuroscience, 2002, 22, 1256-1265.	3.6	144
31	Sympathoexcitatory neurons of rostral ventrolateral medulla exhibit pacemaker properties in the presence of a glutamate-receptor antagonist. Brain Research, 1988, 438, 23-40.	2.2	143
32	C1 neurons mediate a stress-induced anti-inflammatory reflex in mice. Nature Neuroscience, 2017, 20, 700-707.	14.8	142
33	Control of Breathing by Raphe Obscurus Serotonergic Neurons in Mice. Journal of Neuroscience, 2011, 31, 1981-1990.	3.6	140
34	Chapter 7 Sympathoexcitatory neurons of the rostroventrolateral medulla and the origin of the sympathetic vasomotor tone. Progress in Brain Research, 1989, 81, 105-116.	1.4	137
35	The 2008 Carl Ludwig Lecture: retrotrapezoid nucleus, CO ₂ homeostasis, and breathing automaticity. Journal of Applied Physiology, 2008, 105, 404-416.	2.5	136
36	Distribution of glutamic acid decarboxylase mRNA-containing neurons in rat medulla projecting to thoracic spinal cord in relation to monoaminergic brainstem neurons. Journal of Comparative Neurology, 1999, 407, 367-380.	1.6	132

#	Article	IF	CITATIONS
37	Mechanism of the Hypotensive Action of Anandamide in Anesthetized Rats. Hypertension, 1996, 28, 682-686.	2.7	132
38	Evidence for glycinergic respiratory neurons: Bi $_{\tilde{\ell}}$ 1/2tzinger neurons express mRNA for glycinergic transporter 2. Journal of Comparative Neurology, 1999, 407, 583-597.	1.6	131
39	Retrotrapezoid nucleus and central chemoreception. Journal of Physiology, 2008, 586, 2043-2048.	2.9	131
40	Chapter 8 Role of medulla oblongata in generation of sympathetic and vagal outflows. Progress in Brain Research, 1996, 107, 127-144.	1.4	129
41	The Retrotrapezoid Nucleus: Central Chemoreceptor and Regulator of Breathing Automaticity. Trends in Neurosciences, 2019, 42, 807-824.	8.6	129
42	Ventrolateral medulla and sympathetic chemoreflex in the rat. Brain Research, 1993, 609, 174-184.	2.2	127
43	Regulation of sympathetic tone and arterial pressure by rostral ventrolateral medulla after depletion of C1 cells in rat. Journal of Physiology, 2000, 529, 221-236.	2.9	127
44	Serotonergic Neurons Activate Chemosensitive Retrotrapezoid Nucleus Neurons by a pH-Independent Mechanism. Journal of Neuroscience, 2007, 27, 14128-14138.	3.6	127
45	Autonomic areas of rat brain exhibit increased Fos-like immunoreactivity during opiate withdrawal in rats. Brain Research, 1993, 624, 19-28.	2.2	122
46	Neurokinin-1 Receptor-Expressing Cells of the Ventral Respiratory Group Are Functionally Heterogeneous and Predominantly Glutamatergic. Journal of Neuroscience, 2002, 22, 3806-3816.	3.6	122
47	Central chemoreceptors and sympathetic vasomotor outflow. Journal of Physiology, 2006, 577, 369-386.	2.9	119
48	Selective lesion of retrotrapezoid Phox2bâ€expressing neurons raises the apnoeic threshold in rats. Journal of Physiology, 2008, 586, 2975-2991.	2.9	119
49	Properties of C1 and other ventrolateral medullary neurones with hypothalamic projections in the rat. Journal of Physiology, 1999, 517, 477-494.	2.9	118
50	Water deprivation activates a glutamatergic projection from the hypothalamic paraventricular nucleus to the rostral ventrolateral medulla. Journal of Comparative Neurology, 2006, 494, 673-685.	1.6	117
51	Reticulospinal pacemaker neurons of the rat rostral ventrolateral medulla with putative sympathoexcitatory function: an intracellular study in vitro. Brain Research, 1988, 442, 229-239.	2.2	116
52	Acid sensitivity and ultrastructure of the retrotrapezoid nucleus in Phox2b GFP transgenic mice. Journal of Comparative Neurology, 2009, 517, 69-86.	1.6	115
53	Projections of nucleus paragigantocellularis lateralis to locus coeruleus and other structures in rat. Brain Research, 1987, 406, 171-184.	2.2	113
54	Phox2b-Expressing Neurons of the Parafacial Region Regulate Breathing Rate, Inspiration, and Expiration in Conscious Rats. Journal of Neuroscience, 2011, 31, 16410-16422.	3.6	113

#	Article	IF	Citations
55	Pre-Bötzinger Neurons With Preinspiratory Discharges "In Vivo―Express NK1 Receptors in the Rat. Journal of Neurophysiology, 2001, 86, 438-446.	1.8	112
56	Central CO ₂ chemoreception and integrated neural mechanisms of cardiovascular and respiratory control. Journal of Applied Physiology, 2010, 108, 995-1002.	2.5	109
57	Localization of brain angiotensinogen mRNA by hybridization histochemistry. Molecular Brain Research, 1987, 2, 149-158.	2.3	106
58	Re: Retrotrapezoid nucleus: a litmus test for the identification of central chemoreceptors. Experimental Physiology, 2005, 90, 253-257.	2.0	102
59	Elimination of long-term potentiation in the hippocampus by phencyclidine and ketamine. Brain Research, 1983, 258, 159-164.	2.2	101
60	Alpha2A-adrenergic receptors are present in lower brainstem catecholaminergic and serotonergic neurons innervating spinal cord. Brain Research, 1994, 638, 285-294.	2.2	101
61	Photostimulation of channelrhodopsinâ€2 expressing ventrolateral medullary neurons increases sympathetic nerve activity and blood pressure in rats. Journal of Physiology, 2009, 587, 5613-5631.	2.9	101
62	TASK-2 Channels Contribute to pH Sensitivity of Retrotrapezoid Nucleus Chemoreceptor Neurons. Journal of Neuroscience, 2013, 33, 16033-16044.	3.6	98
63	Selective Optogenetic Activation of Rostral Ventrolateral Medullary Catecholaminergic Neurons Produces Cardiorespiratory Stimulation in Conscious Mice. Journal of Neuroscience, 2013, 33, 3164-3177.	3.6	95
64	Location and electrophysiological characterization of rostral medullary adrenergic neurons that contain neuropeptide Y mRNA in rat medulla. , 1999, 415, 482-500.		93
65	Effect of sodium, hemicholinium-3 and antiparkinson drugs on [14C]acetylcholine synthesis and [3H]choline uptake in rat striatal synaptosomes. Brain Research, 1973, 62, 523-529.	2.2	89
66	Electrophysiological properties of spinally-projecting A5 noradrenergic neurons. Brain Research, 1984, 303, 15-29.	2.2	89
67	Retrotrapezoid nucleus, respiratory chemosensitivity and breathing automaticity. Respiratory Physiology and Neurobiology, 2009, 168, 59-68.	1.6	87
68	Preâ€Bötzinger complex receives glutamatergic innervation from galaninergic and other retrotrapezoid nucleus neurons. Journal of Comparative Neurology, 2012, 520, 1047-1061.	1.6	86
69	Phox2b-Expressing Retrotrapezoid Neurons Are Intrinsically Responsive to H ⁺ and CO ₂ . Journal of Neuroscience, 2013, 33, 7756-7761.	3.6	86
70	Retrotrapezoid nucleus and parafacial respiratory group. Respiratory Physiology and Neurobiology, 2010, 173, 244-255.	1.6	85
71	Blockade of long-term potentiation by phencyclidine and if opiates in the hippocampus in vivo and in vitro. Brain Research, 1983, 280, 127-138.	2.2	83
72	Rostral ventrolateral medullary neurons with intrinsic pacemaker properties are not catecholaminergic. Brain Research, 1988, 451, 345-349.	2.2	83

#	Article	IF	CITATIONS
73	Photostimulation of Phox2b Medullary Neurons Activates Cardiorespiratory Function in Conscious Rats. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1184-1194.	5.6	80
74	Depressor and Tachypneic Responses to Chemical Stimulation of the Ventral Respiratory Group Are Reduced by Ablation of Neurokinin-1 Receptor-Expressing Neurons. Journal of Neuroscience, 2002, 22, 3755-3764.	3.6	79
75	Fos expression by glutamatergic neurons of the solitary tract nucleus after phenylephrine-induced hypertension in rats. Journal of Comparative Neurology, 2003, 460, 525-541.	1.6	79
76	Baro-Activated Neurons With Pulse-Modulated Activity in the Rat Caudal Ventrolateral Medulla Express GAD67 mRNA. Journal of Neurophysiology, 2003, 89, 1265-1277.	1.8	78
77	Bötzinger Expiratory-Augmenting Neurons and the Parafacial Respiratory Group. Journal of Neuroscience, 2008, 28, 2506-2515.	3.6	78
78	Optogenetic Stimulation of Adrenergic C1 Neurons Causes Sleep State–Dependent Cardiorespiratory Stimulation and Arousal with Sighs in Rats. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1301-1310.	5 . 6	77
79	Preproenkephalin mRNA is expressed by C1 and non-C1 barosensitive bulbospinal neurons in the rostral ventrolateral medulla of the rat. Journal of Comparative Neurology, 2001, 435, 111-126.	1.6	75
80	Coexpression of vesicular glutamate transporter-3 and \hat{I}^3 -aminobutyric acidergic markers in rat rostral medullary raphe and intermediolateral cell column. Journal of Comparative Neurology, 2005, 492, 477-494.	1.6	75
81	Angiotensin II Decreases a Resting K + Conductance in Rat Bulbospinal Neurons of the C1 Area. Circulation Research, 1996, 78, 274-282.	4.5	74
82	Inspiratory augmenting bulbospinal neurons express both glutamatergic and enkephalinergic phenotypes. Journal of Comparative Neurology, 2003, 455, 113-124.	1.6	73
83	Proton detection and breathing regulation by the retrotrapezoid nucleus. Journal of Physiology, 2016, 594, 1529-1551.	2.9	73
84	Stateâ€dependent control of breathing by the retrotrapezoid nucleus. Journal of Physiology, 2015, 593, 2909-2926.	2.9	72
85	Purinergic P2 Receptors Modulate Excitability But Do Not Mediate pH Sensitivity of RTN Respiratory Chemoreceptors. Journal of Neuroscience, 2006, 26, 7230-7233.	3 . 6	71
86	Non-dopaminergic nigrostriatal pathway. Brain Research, 1981, 213, 291-305.	2.2	70
87	GABAergic and glycinergic presympathetic neurons of rat medulla oblongata identified by retrograde transport of pseudorabies virus and in situ hybridization. Journal of Comparative Neurology, 2004, 479, 257-270.	1.6	68
88	Anesthetic Activation of Central Respiratory Chemoreceptor Neurons Involves Inhibition of a THIK-1-Like Background K+ Current. Journal of Neuroscience, 2010, 30, 9324-9334.	3.6	67
89	Inhibitory input from slowly adapting lung stretch receptors to retrotrapezoid nucleus chemoreceptors. Journal of Physiology, 2007, 580, 285-300.	2.9	66
90	Nalcn Is a "Leak" Sodium Channel That Regulates Excitability of Brainstem Chemosensory Neurons and Breathing. Journal of Neuroscience, 2016, 36, 8174-8187.	3.6	66

#	Article	IF	Citations
91	Unit activity in nucleus paragigantocellularis lateralis during cerebral ischemia in the rat. Brain Research, 1986, 364, 301-314.	2.2	64
92	Silent hypoxaemia in COVIDâ€19 patients. Journal of Physiology, 2021, 599, 1057-1065.	2.9	64
93	Inhibition of sympathetic preganglionic discharges by epinephrine and α-methylepinephrine. Brain Research, 1982, 235, 271-283.	2,2	61
94	Baroreceptor-mediated inhibition of A5 noradrenergic neurons. Brain Research, 1984, 303, 31-40.	2.2	61
95	Neuromedin B Expression Defines the Mouse Retrotrapezoid Nucleus. Journal of Neuroscience, 2017, 37, 11744-11757.	3.6	61
96	Effects of vasopressin and other neuropeptides on rostral medullary sympathoexcitatory neurons â€in vitro'. Brain Research, 1989, 492, 261-270.	2.2	60
97	Effects of morphine and morphine withdrawal on adrenergic neurons of the rat rostral ventrolateral medulla. Brain Research, 1995, 676, 245-257.	2.2	60
98	Hypoxia Silences Retrotrapezoid Nucleus Respiratory Chemoreceptors via Alkalosis. Journal of Neuroscience, 2015, 35, 527-543.	3 . 6	60
99	Blood Pressure Regulation by the Rostral Ventrolateral Medulla in Conscious Rats: Effects of Hypoxia, Hypercapnia, Baroreceptor Denervation, and Anesthesia. Journal of Neuroscience, 2017, 37, 4565-4583.	3.6	57
100	Glutamatergic neuronal projections from the marginal layer of the rostral ventral medulla to the respiratory centers in rats. Journal of Comparative Neurology, 2004, 473, 73-85.	1.6	56
101	Pre- and Postsynaptic Inhibitory Actions of Methionine-Enkephalin on Identified Bulbospinal Neurons of the Rat RVL. Journal of Neurophysiology, 1998, 80, 2003-2014.	1.8	55
102	Vagus nerve stimulation activates two distinct neuroimmune circuits converging in the spleen to protect mice from kidney injury. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	55
103	Glutamatergic Neurotransmission between the C1 Neurons and the Parasympathetic Preganglionic Neurons of the Dorsal Motor Nucleus of the Vagus. Journal of Neuroscience, 2013, 33, 1486-1497.	3.6	54
104	Neuronal Networks in Hypertension. Hypertension, 2020, 76, 300-311.	2.7	54
105	Cholinergic neurons in the mouse rostral ventrolateral medulla target sensory afferent areas. Brain Structure and Function, 2013, 218, 455-475.	2.3	53
106	Optogenetic Stimulation of C1 and Retrotrapezoid Nucleus Neurons Causes Sleep State–Dependent Cardiorespiratory Stimulation and Arousal in Rats. Hypertension, 2013, 61, 835-841.	2.7	53
107	Rostral Ventrolateral Medulla and Hypertension. Hypertension, 2018, 72, 559-566.	2.7	53
108	Orexin A activates retrotrapezoid neurons in mice. Respiratory Physiology and Neurobiology, 2011, 175, 283-287.	1.6	52

#	Article	IF	CITATIONS
109	Activation of the retrotrapezoid nucleus by posterior hypothalamic stimulation. Journal of Physiology, 2009, 587, 5121-5138.	2.9	50
110	Monosynaptic Glutamatergic Activation of Locus Coeruleus and Other Lower Brainstem Noradrenergic Neurons by the C1 Cells in Mice. Journal of Neuroscience, 2013, 33, 18792-18805.	3.6	50
111	Retrotrapezoid nucleus in the rat. Neuroscience Letters, 1989, 101, 138-142.	2.1	49
112	Galanin is a selective marker of the retrotrapezoid nucleus in rats. Journal of Comparative Neurology, 2009, 512, 373-383.	1.6	49
113	Breathing regulation and blood gas homeostasis after near complete lesions of the retrotrapezoid nucleus in adult rats. Journal of Physiology, 2018, 596, 2521-2545.	2.9	47
114	Regional differences in the sensitivity of cholinergic neurons to dopaminergic drugs and quipazine in the rat striatum. Brain Research, 1977, 136, 487-500.	2.2	46
115	Cardiorespiratory neurons of the rat ventrolateral medulla contain TASK-1 and TASK-3 channel mRNA. Respiratory Physiology and Neurobiology, 2003, 138, 19-35.	1.6	45
116	An electrophysiological study of the forebrain projection of nucleus commissuralis: Preliminary identification of presumed A2 catecholaminergic neurons. Brain Research, 1983, 263, 211-222.	2.2	43
117	The Retrotrapezoid Nucleus and Breathing. Advances in Experimental Medicine and Biology, 2012, 758, 115-122.	1.6	42
118	GABAergic Pump Cells of Solitary Tract Nucleus Innervate Retrotrapezoid Nucleus Chemoreceptors. Journal of Neurophysiology, 2007, 98, 374-381.	1.8	41
119	Regulation of visceral sympathetic tone by A5 noradrenergic neurons in rodents. Journal of Physiology, 2011, 589, 903-917.	2.9	41
120	Voltage-Dependent Calcium Currents in Bulbospinal Neurons of Neonatal Rat Rostral Ventrolateral Medulla: Modulation by α ₂ -Adrenergic Receptors. Journal of Neurophysiology, 1998, 79, 583-594.	1.8	40
121	Interdependent feedback regulation of breathing by the carotid bodies and the retrotrapezoid nucleus. Journal of Physiology, 2018, 596, 3029-3042.	2.9	40
122	The orexinergic neurons receive synaptic input from C1 cells in rats. Journal of Comparative Neurology, 2014, 522, 3834-3846.	1.6	39
123	Respiratory modulation of pre- and postganglionic lumbar vasomotor sympathetic neurons in the rat. Neuroscience Letters, 1990, 119, 148-152.	2.1	38
124	Transneuronal mapping of the CNS network controlling sympathetic outflow to the rat thymus. Autonomic Neuroscience: Basic and Clinical, 2007, 131, 9-20.	2.8	38
125	?-opioid receptors are present in functionally identified sympathoexcitatory neurons in the rat rostral ventrolateral medulla. Journal of Comparative Neurology, 2001, 433, 34-47.	1.6	37
126	Opioid Signalling In The Rat Rostral Ventrolateral Medulla. Clinical and Experimental Pharmacology and Physiology, 2002, 29, 238-242.	1.9	36

#	Article	IF	Citations
127	Chemoreception and asphyxia-induced arousal. Respiratory Physiology and Neurobiology, 2013, 188, 333-343.	1.6	36
128	Afferent and efferent connections of C1 cells with spinal cord or hypothalamic projections in mice. Brain Structure and Function, 2016, 221, 4027-4044.	2.3	36
129	Vesicular glutamate transporter 2 is required for the respiratory and parasympathetic activation produced by optogenetic stimulation of catecholaminergic neurons in the rostral ventrolateral medulla of mice <i>in vivo</i> European Journal of Neuroscience, 2014, 39, 98-106.	2.6	35
130	Location and properties of respiratory neurones with putative intrinsic bursting properties in the rat <i>in situ</i> . Journal of Physiology, 2009, 587, 3175-3188.	2.9	33
131	Excitation of rostral medullary pacemaker neurons with putative sympathoexcitatory function by cyclic AMP and β-adrenoceptor agonists â€~in vitro'. Brain Research, 1990, 511, 30-40.	2.2	32
132	The Retrotrapezoid Nucleus and Central Chemoreception. Advances in Experimental Medicine and Biology, 2008, 605, 327-332.	1.6	32
133	The retrotrapezoid nucleus stimulates breathing by releasing glutamate in adult conscious mice. European Journal of Neuroscience, 2015, 42, 2271-2282.	2.6	31
134	A brainstem peptide system activated at birth protects postnatal breathing. Nature, 2021, 589, 426-430.	27.8	31
135	Effect of phencyclidines on hippocampal pyramidal cells. Brain Research, 1982, 252, 343-352.	2.2	30
136	Activation of 5-Hydroxytryptamine Type 3 Receptor-Expressing C-Fiber Vagal Afferents Inhibits Retrotrapezoid Nucleus Chemoreceptors in Rats. Journal of Neurophysiology, 2007, 98, 3627-3637.	1.8	30
137	Contribution of the Retrotrapezoid Nucleus and Carotid Bodies to Hypercapnia- and Hypoxia-induced Arousal from Sleep. Journal of Neuroscience, 2019, 39, 9725-9737.	3.6	30
138	Rostral ventrolateral medullary neurons projecting to locus coeruleus have cardiorespiratory inputs. Brain Research, 1992, 598, 67-75.	2.2	29
139	Selective optogenetic stimulation of the retrotrapezoid nucleus in sleeping rats activates breathing without changing blood pressure or causing arousal or sighs. Journal of Applied Physiology, 2015, 118, 1491-1501.	2.5	29
140	Differential Contribution of the Retrotrapezoid Nucleus and C1 Neurons to Active Expiration and Arousal in Rats. Journal of Neuroscience, 2020, 40, 8683-8697.	3.6	29
141	Comparative effects of sciatic nerve stimulation, blood pressure, and morphine on the activity of A5 and A6 pontine noradrenergic neurons. Brain Research, 1985, 327, 191-201.	2.2	28
142	C1 neurons: a nodal point for stress?. Experimental Physiology, 2018, 103, 332-336.	2.0	28
143	The respiratory chemoreception conundrum: Light at the end of the tunnel?. Brain Research, 2013, 1511, 126-137.	2.2	26
144	Action of phencyclidine on synaptic transmission in the hippocampus. Brain Research, 1982, 236, 289-304.	2,2	25

#	Article	IF	CITATIONS
145	Detection of amino acid and peptide transmitters in physiologically identified brainstem cardiorespiratory neurons. Autonomic Neuroscience: Basic and Clinical, 2004, 114, 1-10.	2.8	22
146	Morphology of rostral medullary neurons with intrinsic pacemaker activity in the rat. Brain Research, 1991, 556, 61-70.	2.2	19
147	Prototypical Imidazoline-1 Receptor Ligand Moxonidine Activates Alpha2-Adrenoceptors in Bulbospinal Neurons of the RVL. Journal of Neurophysiology, 2000, 83, 766-776.	1.8	17
148	Is plasticity within the retrotrapezoid nucleus responsible for the recovery of the setâ€point after carotid body denervation in rats?. Journal of Physiology, 2016, 594, 3371-3390.	2.9	16
149	Sciatic nerve stimulation activates the retrotrapezoid nucleus in anesthetized rats. Journal of Neurophysiology, 2016, 116, 2081-2092.	1.8	16
150	Rostral ventrolateral medulla, retropontine region and autonomic regulations. Autonomic Neuroscience: Basic and Clinical, 2022, 237, 102922.	2.8	14
151	Central respiratory modulation of facial motoneurons in rats. Neuroscience Letters, 1993, 151, 224-228.	2.1	13
152	Adrenergic C1 neurons monitor arterial blood pressure and determine the sympathetic response to hemorrhage. Cell Reports, 2022, 38, 110480.	6.4	12
153	Respiratory alkalosis provokes spike-wave discharges in seizure-prone rats. ELife, 2022, 11, .	6.0	11
154	Re: Homing in on the specific phenotype(s) of central respiratory chemoreceptors. Experimental Physiology, 2005, 90, 266-268.	2.0	10
155	Putative Mechanism of Salt-Dependent Neurogenic Hypertension. Hypertension, 2017, 69, 20-22.	2.7	8
156	Central Network Dynamics Regulating Visceral and Humoral Functions. Journal of Neuroscience, 2017, 37, 10848-10854.	3.6	8
157	Sympatholytic effect of clonidine depends on the respiratory phase in rat splanchnic nerve. Journal of the Autonomic Nervous System, 1995, 53, 82-86.	1.9	7
158	Commentaries on Viewpoint: Central chemoreception is a complex system function that involves multiple brain stem sites. Journal of Applied Physiology, 2009, 106, 1467-1470.	2.5	6
159	Cardiorespiratory Integration. , 2011, , 180-201.		5
160	Atipamezole-precipitated clonidine withdrawal induces c-Fos expression in rat central nervous system. Brain Research, 1997, 764, 81-92.	2.2	4
161	Antagonist precipitated clonidine withdrawal in rat: Effects on locus coeruleus neurons, sympathetic nerves and cardiovascular parameters. Journal of the Autonomic Nervous System, 1998, 71, 85-95.	1.9	4
162	Sodium Is Detected by the OVLT to Regulate Sympathetic Tone. Neuron, 2019, 101, 3-5.	8.1	4

#	Article	IF	CITATIONS
163	Neuroprosthetic device maintains blood pressure after spinal cord injury. Nature, 2021, 590, 223-224.	27.8	2
164	Distribution of glutamic acid decarboxylase mRNA-containing neurons in rat medulla projecting to thoracic spinal cord in relation to monoaminergic brainstem neurons. , 0, .		1
165	Distribution of glutamic acid decarboxylase mRNAâ€containing neurons in rat medulla projecting to thoracic spinal cord in relation to monoaminergic brainstem neurons. Journal of Comparative Neurology, 1999, 407, 367-380.	1.6	1
166	Contribution of retrotrapezoid nucleus and carotid bodies to asphyxiaâ€induced arousal in rats. FASEB Journal, 2019, 33, 733.6.	0.5	1
167	Re: Homing in on the specific phenotype(s) of central respiratory chemoreceptors. Experimental Physiology, 2005, 90, 266-268.	2.0	0
168	Authors' response to G. B. Richerson's commentary. Experimental Physiology, 2005, 90, 257-257.	2.0	0
169	The dynamic activity of C1 neurons determines the level of blood pressure during hemorrhage in freely behaving rats. FASEB Journal, 2021, 35, .	0.5	0
170	Peripheral chemoreceptor inputs to retrotrapezoid nucleus (RTN) chemoreceptor neurons. FASEB Journal, 2006, 20, A788.	0.5	0
171	Optogenetic stimulation of C1 neurons activates breathing in mice. FASEB Journal, 2012, 26, .	0.5	0
172	Ablation of neuromedin B (NMB)â€expressing neurons located within retrotrapezoid nucleus (RTN) reduces the central respiratory chemoreflex (CRC) selectively in conscious rats. FASEB Journal, 2018, 32, 894.10.	0.5	0