Sergio Bertolucci

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8013183/sergio-bertolucci-publications-by-year.pdf

Version: 2024-04-05

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 16,660 361 117 h-index g-index citations papers 17,931 2.99 375 4.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
361	Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC. <i>Journal of Instrumentation</i> , 2022 , 17, P01005	1	1
360	Search for magnetic monopoles produced via the Schwinger mechanism <i>Nature</i> , 2022 , 602, 63-67	50.4	1
359	Analysis methods used and planned for VIP-2. <i>EPJ Web of Conferences</i> , 2022 , 262, 01022	0.3	
358	Testing the Pauli Exclusion Principle with the VIP-2 Experiment. Symmetry, 2022, 14, 893	2.7	2
357	The Large Hadron E lectron Collider at the HL-LHC. <i>Journal of Physics G: Nuclear and Particle Physics</i> , 2021 , 48, 110501	2.9	3
356	Semi-Analytical Monte Carlo Method to Simulate the Signal of the VIP-2 Experiment. <i>Symmetry</i> , 2021 , 13, 6	2.7	
355	The key role of the Silicon Drift Detectors in testing the Pauli Exclusion Principle for electrons: the VIP-2 experiment. <i>Journal of Physics: Conference Series</i> , 2020 , 1548, 012033	0.3	O
354	High precision test of the Pauli Exclusion Principle for electrons. <i>Journal of Physics: Conference Series</i> , 2020 , 1586, 012016	0.3	
353	Volume III. DUNE far detector technical coordination. <i>Journal of Instrumentation</i> , 2020 , 15, T08009-T08	009	8
352	VIP-2 -High-Sensitivity Tests on the Pauli Exclusion Principle for Electrons. <i>Entropy</i> , 2020 , 22,	2.8	3
351	VIP2 at Gran Sasso - Test of the validity of the spin statistics theorem for electrons with X-ray spectroscopy. <i>Journal of Physics: Conference Series</i> , 2020 , 1342, 012087	0.3	
350	Search for a remnant violation of the Pauli exclusion principle in a Roman lead target. <i>European Physical Journal C</i> , 2020 , 80, 1	4.2	3
349	Volume I. Introduction to DUNE. <i>Journal of Instrumentation</i> , 2020 , 15, T08008-T08008	1	67
348	First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform. <i>Journal of Instrumentation</i> , 2020 , 15, P12004-P12004	1	29
347	VIP-2 - Testing spin-statistics for electrons with high sensitivity. <i>Journal of Physics: Conference Series</i> , 2020 , 1468, 012230	0.3	
346	Volume IV. The DUNE far detector single-phase technology. <i>Journal of Instrumentation</i> , 2020 , 15, T080	10-T08	 0 1 9
345	High Precision Test of the Pauli Exclusion Principle for Electrons. <i>Condensed Matter</i> , 2019 , 4, 45	1.8	2

344	FCC-ee: The Lepton Collider. European Physical Journal: Special Topics, 2019, 228, 261-623	2.3	193
343	VIP2 in LNGS - Testing the Pauli Exclusion Principle for electrons with high sensitivity. <i>Journal of Physics: Conference Series</i> , 2019 , 1275, 012028	0.3	
342	Detector setup of the VIP2 underground experiment at LNGS. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 2019 , 936, 233-234	1.2	1
341	Experimental search for the violation of Pauli exclusion principle: VIP-2 Collaboration. <i>European Physical Journal C</i> , 2018 , 78, 319	4.2	15
340	Underground Test of Quantum Mechanics: The VIP2 Experiment. <i>STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health,</i> 2018 , 155-168	0.2	1
339	Search for the violation of Pauli Exclusion Principle at LNGS. <i>EPJ Web of Conferences</i> , 2018 , 182, 02118	0.3	1
338	On the Importance of Electron Diffusion in a Bulk-Matter Test of the Pauli Exclusion Principle. <i>Entropy</i> , 2018 , 20,	2.8	10
337	Signals for invisible matter from solar - terrestrial observations. <i>EPJ Web of Conferences</i> , 2017 , 164, 070	141 .3	O
336	VIP-2 at LNGS: An experiment on the validity of the Pauli Exclusion Principle for electrons. <i>Journal of Physics: Conference Series</i> , 2017 , 873, 012018	0.3	
335	Underground tests of quantum mechanics. Whispers in the cosmic silence?. <i>Journal of Physics:</i> Conference Series, 2017 , 880, 012045	0.3	1
334	The Sun and its Planets as detectors for invisible matter. <i>Physics of the Dark Universe</i> , 2017 , 17, 13-21	4.4	31
333	Quantum mechanics under X-rays in the Gran Sasso underground laboratory. <i>International Journal of Quantum Information</i> , 2017 , 15, 1740004	0.8	2
332	Test of the Pauli Exclusion Principle in the VIP-2 Underground Experiment. Entropy, 2017, 19, 300	2.8	12
331	Spontaneously Emitted X-rays: An Experimental Signature of the Dynamical Reduction Models. <i>Foundations of Physics</i> , 2016 , 46, 263-268	1.2	14
330	Application of photon detectors in the VIP2 experiment to test the Pauli Exclusion Principle. Journal of Physics: Conference Series, 2016, 718, 052030	0.3	8
329	Searches for the violation of Pauli exclusion principle at LNGS in VIP(-2) experiment. <i>Journal of Physics: Conference Series</i> , 2016 , 718, 042055	0.3	5
328	The X-ray machine for the examination of quantum mechanics. <i>International Journal of Quantum Information</i> , 2016 , 14, 1640017	0.8	2
327	Beyond Quantum Mechanics? Hunting the 'Impossible' Atoms Pauli Exclusion Principle Violation and Spontaneous Collapse of the Wave Function at Test. <i>Acta Physica Polonica B</i> , 2015 , 46, 147	1.9	3

326	Testing the Pauli Exclusion Principle for Electrons at LNGS. <i>Physics Procedia</i> , 2015 , 61, 552-559		2
325	VIP 2: experimental tests of the pauli exclusion principle for electrons. <i>Hyperfine Interactions</i> , 2015 , 233, 121-126	0.8	
324	High sensitivity tests of the Pauli Exclusion Principle with VIP2. <i>Journal of Physics: Conference Series</i> , 2015 , 631, 012070	0.3	3
323	Experimental search for the Impossible atoms Pauli Exclusion Principle violation and spontaneous collapse of the wave function at test. <i>Journal of Physics: Conference Series</i> , 2015 , 626, 012027	0.3	1
322	X rays on quantum mechanics: Pauli Exclusion Principle and collapse models at test. <i>Journal of Physics: Conference Series</i> , 2015 , 631, 012068	0.3	2
321	Quantum explorations: from the waltz of the Pauli exclusion principle to the rock of the spontaneous collapse. <i>Physica Scripta</i> , 2015 , 90, 028003	2.6	3
320	Hunting the "impossible atoms" Pauli exclusion principle violation and spontaneous collapse of the wave function at test. <i>International Journal of Quantum Information</i> , 2014 , 12, 1560012	0.8	
319	Experimental Tests of Quantum Mechanics: Pauli Exclusion Principle and Spontaneous Collapse Models. <i>Springer Proceedings in Physics</i> , 2014 , 181-187	0.2	
318	Neutrino speed: a report on the speed measurements of the BOREXINO, ICARUS and LVD experiments with the CNGS beam. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2013 , 235-236, 289-295		1
~~=			
317	Testing the Pauli Exclusion Principle for Electrons. <i>Journal of Physics: Conference Series</i> , 2013 , 447, 012	0703	11
31/	A glimpse into the Pandora box of the quantum mechanics: The Pauli exclusion principle violation and spontaneous collapse models put at test 2012 ,	07:03	2
	A glimpse into the Pandora box of the quantum mechanics: The Pauli exclusion principle violation	07:0 3 2.9	
316	A glimpse into the Pandora box of the quantum mechanics: The Pauli exclusion principle violation and spontaneous collapse models put at test 2012 , A Large Hadron Electron Collider at CERN Report on the Physics and Design Concepts for Machine		2
316 315	A glimpse into the Pandora box of the quantum mechanics: The Pauli exclusion principle violation and spontaneous collapse models put at test 2012 , A Large Hadron Electron Collider at CERN Report on the Physics and Design Concepts for Machine and Detector. <i>Journal of Physics G: Nuclear and Particle Physics</i> , 2012 , 39, 075001 Experimental tests of Quantum Mechanics: from Pauli Exclusion Principle Violation to spontaneous	2.9	317
316 315 314	A glimpse into the Pandora box of the quantum mechanics: The Pauli exclusion principle violation and spontaneous collapse models put at test 2012, A Large Hadron Electron Collider at CERN Report on the Physics and Design Concepts for Machine and Detector. <i>Journal of Physics G: Nuclear and Particle Physics</i> , 2012, 39, 075001 Experimental tests of Quantum Mechanics: from Pauli Exclusion Principle Violation to spontaneous collapse models. <i>Journal of Physics: Conference Series</i> , 2012, 361, 012006	2.9	2 317 5
316 315 314 313	A glimpse into the Pandora box of the quantum mechanics: The Pauli exclusion principle violation and spontaneous collapse models put at test 2012, A Large Hadron Electron Collider at CERN Report on the Physics and Design Concepts for Machine and Detector. Journal of Physics G: Nuclear and Particle Physics, 2012, 39, 075001 Experimental tests of Quantum Mechanics: from Pauli Exclusion Principle Violation to spontaneous collapse models. Journal of Physics: Conference Series, 2012, 361, 012006 Testing the Pauli Exclusion Principle for electrons. Journal of Physics: Conference Series, 2011, 335, 012 Experimental tests of quantum mechanics (Pauli exclusion principle violation (the VIP experiment)	2.9 0.3	2 317 5 2
316 315 314 313 312	A glimpse into the Pandora box of the quantum mechanics: The Pauli exclusion principle violation and spontaneous collapse models put at test 2012, A Large Hadron Electron Collider at CERN Report on the Physics and Design Concepts for Machine and Detector. <i>Journal of Physics G: Nuclear and Particle Physics</i> , 2012, 39, 075001 Experimental tests of Quantum Mechanics: from Pauli Exclusion Principle Violation to spontaneous collapse models. <i>Journal of Physics: Conference Series</i> , 2012, 361, 012006 Testing the Pauli Exclusion Principle for electrons. <i>Journal of Physics: Conference Series</i> , 2011, 335, 012 Experimental tests of quantum mechanics Pauli exclusion principle violation (the VIP experiment) and future perspective. <i>Journal of Physics: Conference Series</i> , 2011, 306, 012036 Experimental tests of quantum mechanics: Pauli Exclusion Principle Violation (the VIP experiment)	2.9 0.3	2 317 5 2

308	Measurement of the neutron detection efficiency of a 80% absorber100% scintillating fibers calorimeter. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 2011 , 626-627, 67-71	1.2	
307	Search for quark contact interactions in dijet angular distributions in pp collisions at s=7 TeV measured with the ATLAS detector. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2011 , 694, 327-345	4.2	53
306	EXPERIMENTAL TESTS OF QUANTUM MECHANICS PAULI EXCLUSION PRINCIPLE VIOLATION (THE VIP EXPERIMENT) AND FUTURE PERSPECTIVES. <i>International Journal of Quantum Information</i> , 2011 , 09, 145-154	0.8	10
305	Search for new particles in two-jet final states in 7 TeV proton-proton collisions with the ATLAS detector at the LHC. <i>Physical Review Letters</i> , 2010 , 105, 161801	7.4	97
304	Performance of the ATLAS detector using first collision data. <i>Journal of High Energy Physics</i> , 2010 , 2010, 1	5.4	14
303	The VIP Experimental Limit on the Pauli Exclusion Principle Violation by Electrons. <i>Foundations of Physics</i> , 2010 , 40, 765-775	1.2	9
302	Charged-particle multiplicities in pp interactions at . <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2010 , 688, 21-42	4.2	121
301	Measurement of neutron detection efficiency between 22 and 174MeV using two different kinds of Pb-scintillating fiber sampling calorimeters. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2010 , 617, 107-108	1.2	
300	RECENT RESULTS FROM KLOE AT DANE. International Journal of Modern Physics E, 2009, 18, 231-240	0.7	1
299	VIP EXPERIMENT: NEW EXPERIMENTAL LIMIT ON PAULI EXCLUSION PRINCIPLE VIOLATION BY ELECTRONS. <i>International Journal of Modern Physics A</i> , 2009 , 24, 506-510	1.2	1
298	A global fit to determine the pseudoscalar mixing angle and the gluonium content of the Imeson. <i>Journal of High Energy Physics</i> , 2009 , 2009, 105-105	5.4	33
297	Scalar mesons at KLOE. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2009 , 186, 290-293		20
296	Measurement and simulation of neutron detection efficiency in lead-scintillating fiber calorimeters. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2009 , 197, 353-357		
295	Calibration and performances of the KLOE calorimeter. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2009 , 598, 239-24	3 ^{1.2}	16
294	Measurement of the detection efficiency of the KLOE calorimeter for neutrons between 22 and 174 MeV. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 598, 244-247	1.2	1
293	Measurement of (e+eE>H()) and the dipion contribution to the muon anomaly with the KLOE detector. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2009 , 670, 285	-2 ¹ 9 ² 1	123
292	Search for the KS->e+eldecay with the KLOE detector. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2009 , 672, 203-208	4.2	10
291	Measurement of the branching ratio and search for a CP violating asymmetry in the . <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2009 , 675, 283-288	4.2	15

2 90	Search for the decay . <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2009 , 679, 10-14	4.2	10
289	Study of the a0(980) meson via the radiative decay ?->D\(\text{D}\) with the KLOE detector. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics,</i> 2009 , 681, 5-13	4.2	46
288	The VIP experiment. Journal of Physics: Conference Series, 2009, 174, 012065	0.3	
287	Measurement and simulation of the neutron detection efficiency with a Pb-scintillating fiber calorimeter. <i>Journal of Physics: Conference Series</i> , 2009 , 160, 012023	0.3	2
286	New experimental limit on the Pauli exclusion principle violation by electrons (the VIP experiment). <i>Journal of Physics: Conference Series</i> , 2009 , 171, 012031	0.3	
285	Measurement and Simulation of the Neutron Response and Detection Efficiency of a Pb-Scintillating Fiber Calorimeter. <i>IEEE Transactions on Nuclear Science</i> , 2008 , 55, 1409-1412	1.7	
284	Determination of 🛘 > 🛱 Dalitz plot slopes and asymmetries with the KLOE detector. <i>Journal of High Energy Physics</i> , 2008 , 2008, 006-006	5.4	10
283	Measurement of theKS-> Ibranching ratio using a pureKSbeam with the KLOE detector. <i>Journal of High Energy Physics</i> , 2008 , 2008, 051-051	5.4	
282	Vus and lepton universality from kaon decays with the KLOE detector. <i>Journal of High Energy Physics</i> , 2008 , 2008, 059-059	5.4	
281	Measurement of the charged kaon lifetime with the KLOE detector. <i>Journal of High Energy Physics</i> , 2008 , 2008, 073-073	5.4	2
280	Measurement of the absolute branching ratios for semileptonicK∃decays with the KLOE detector. Journal of High Energy Physics, 2008 , 2008, 098-098	5.4	3
279	The ATLAS Experiment at the CERN Large Hadron Collider. <i>Journal of Instrumentation</i> , 2008 , 3, S08003	3-S <u>Ø</u> 800)31273
278	Measurement of the absolute branching ratio of the . <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2008 , 666, 305-310	4.2	7
277	Study of the process . <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2008 , 669, 223-228	4.2	36
276	A study of the radiative KL->\text{He}?\text{Idecay} and search for direct photon emission with the KLOE detector. European Physical Journal C, 2008, 55, 539	4.2	3
275	Measurement of the pseudoscalar mixing angle and . <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2007 , 648, 267-273	4.2	86
274	Dalitz plot analysis of e+e>DDDevents at (sqrt{s} simeq{M}_{phi}) with the KLOE detector. <i>European Physical Journal C</i> , 2007 , 49, 473	4.2	53
273	Towards the european strategy for particle physics: The briefing book. <i>European Physical Journal C</i> , 2007 , 51, 421-500	4.2	8

(2006-2007)

Measurement and simulation of the neutron response and detection efficiency of a Pb-scintillating fiber calorimeter. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2007 , 581, 368-372	1.2	14	
LATEST RESULTS FROM KLOE AT DANE. International Journal of Modern Physics A, 2007, 22, 357-364	1.2		
VIP: AN EXPERIMENT TO SEARCH FOR A VIOLATION OF THE PAULI EXCLUSION PRINCIPLE. International Journal of Modern Physics A, 2007 , 22, 242-248	1.2	5	
HIGH BRIGHTNESS LASER INDUCED MULTI-MEV ELECTRON/PROTON SOURCES. <i>International Journal of Modern Physics A</i> , 2007 , 22, 3810-3825	1.2	2	
Measurement of the KL-> If orm factor parameters with the KLOE detector. <i>Journal of High Energy Physics</i> , 2007 , 2007, 105-105	5.4	5	
Precise measurements of the Imeson and the neutral kaon masses with the KLOE detector. Journal of High Energy Physics, 2007 , 2007, 073-073	5.4	1	
Status of the sparc-x project 2007 ,		1	
New experimental limit on Pauli exclusion principle violation by electrons (VIP experiment). <i>Journal of Physics: Conference Series</i> , 2007 , 67, 012033	0.3		
Measurements of the absolute branching ratios for the dominant . <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics,</i> 2006 , 632, 43-50	4.2	55	
Measurement of the absolute branching ratio for the . <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2006 , 632, 76-80	4.2	38	
Study of the decay . <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2006 , 634, 148-154	4.2	67	
Measurement of the form-factor slopes for the decay KL->He?Iwith the KLOE detector. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2006 , 636, 166-172	4.2	38	
Study of the branching ratio and charge asymmetry for the decay KS->@@with the KLOE detector. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2006 , 636, 173-182	4.2	52	
Measurement of the branching ratio of the . <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2006 , 638, 140-145	4.2	21	
New experimental limit on the Pauli exclusion principle violation by electrons. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics,</i> 2006 , 641, 18-22	4.2	55	
First observation of quantum interference in the process ?->KSKL->⊞⊞A test of quantum mechanics and CPT symmetry. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2006 , 642, 315-321	4.2	60	
Precise measurement of (KS->\textit{KS->\textit{DD}}/(KS->\textit{DD}) with the KLOE detector at DANE. European Physical Journal C, 2006 , 48, 767	4.2	16	
Measurement of the DANE luminosity with the KLOE detector using large angle Bhabha scattering. <i>European Physical Journal C</i> , 2006 , 47, 589	4.2	36	
	fiber calorimeter. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 581, 368-372 LATEST RESULTS FROM KLOE AT DABIE. International Journal of Modern Physics A, 2007, 22, 357-364 VIP: AN EXPERIMENT TO SEARCH FOR A VIOLATION OF THE PAULI EXCLUSION PRINCIPLE. International Journal of Modern Physics A, 2007, 22, 242-248 HIGH BRIGHTNESS LASER INDUCED MULTI-MEV ELECTRON/PROTON SOURCES. International Journal of Modern Physics A, 2007, 22, 3810-3825 Measurement of the KL-> Borm factor parameters with the KLOE detector. Journal of High Energy Physics, 2007, 2007, 105-105 Precise measurements of the Imeson and the neutral kaon masses with the KLOE detector. Journal of High Energy Physics, 2007, 2007, 2007, 2007, 073-073 Status of the sparc-x project 2007, New experimental limit on Pauli exclusion principle violation by electrons (VIP experiment). Journal of Physics Conference Series, 2007, 67, 012033 Measurements of the absolute branching ratios for the dominant. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 632, 43-50 Measurement of the absolute branching ratio for the. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 634, 148-154 Measurement of the decay. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 636, 166-172 Study of the branching ratio and charge asymmetry for the decay KS->Bivith the KLOE detector. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 636, 166-172 Study of the branching ratio of the . Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 636, 173-182 Measurement of the branching ratio of the . Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 636, 173-182 Measurement of the Dranching ratio of the . Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Phy	fiber calorimeter. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 581, 368-372 LATEST RESULTS FROM KLOE AT DABLE. International Journal of Modern Physics A, 2007, 22, 357-364 1.2 VIP: AN EXPERIMENT TO SEARCH FOR A VIOLATION OF THE PAULI EXCLUSION PRINCIPLE. International Journal of Modern Physics A, 2007, 22, 242-248 HIGH BRICHTNESS LASER INDUCED MULTI-MEV ELECTRON/PROTON SOURCES. International Journal of Modern Physics A, 2007, 22, 3810-3825 Measurement of the KL-> Iform factor parameters with the KLOE detector. Journal of High Energy Physics, 2007, 105-105 Precise measurements of the Ineson and the neutral kaon masses with the KLOE detector. Journal of High Energy Physics, 2007, 2007, 073-073 Status of the sparc-x project 2007, New experimental limit on Pauli exclusion principle violation by electrons (VIP experiment). Journal of Physics: Conference Series, 2007, 67, 012033 Measurements of the absolute branching ratios for the dominant. Physics Letters, Section B: Nuclear, Elementory Particle and High-Energy Physics, 2006, 632, 43-50 Measurement of the absolute branching ratio for the . Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 632, 76-80 42 Study of the decay. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 636, 166-172 Study of the branching ratio and charge asymmetry for the decay KS->Bifwith the KLOE detector. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 636, 173-182 Measurement of the branching ratio of the. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 636, 173-182 Measurement of the branching ratio of the . Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 636, 173-182 Measurement of the branching ratio of the . Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 20	fiber calorimeter, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 581, 368-372 LATEST RESULTS FROM KLOE AT DAÑE. International Journal of Modern Physics A, 2007, 22, 357-364 1.2 VIP: AN EXPERIMENT TO SEARCH FOR A VIOLATION OF THE PAULI EXCLUSION PRINCIPLE: International Journal of Modern Physics A, 2007, 22, 242-248 HIGH BRIGHTINESS LASER INDUCED MULTI-MEV PLECTRON/PROTON SOURCES. International Journal of Modern Physics A, 2007, 22, 3810-3825 Measurement of the KL-> Torm factor parameters with the KLOE detector. Journal of High Energy Physics, 2007, 2007, 105-105 Precise measurements of the Ilmeson and the neutral kaon masses with the KLOE detector. Journal of High Energy Physics, 2007, 2007, 073-073 Status of the sparc-x project 2007, New experimental limit on Pauli exclusion principle violation by electrons (VIP experiment). Journal of Physics: Conference Series, 2007, 67, 012033 Measurements of the absolute branching ratios for the dominant. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 632, 43-50 Measurement of the absolute branching ratio for the. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 632, 76-80 Study of the decay. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 636, 166-172 According to the branching ratio and charge asymmetry for the decay KS->Blivith the KLOE detector. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 636, 166-173-182 Measurement of the branching ratio of the. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 636, 161-173-182 Measurement of the branching ratio of the. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 636, 161-173-182 Measurement of the branching ratio of the. Physics Letters, Section B: Nuclear, Elementary Particle and High-Ene

254	Measurement of . <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2005 , 606, 12-24	4.2	182
253	Upper limit on the ➡⊞branching ratio with the KLOE detector. <i>Physics Letters, Section B:</i> Nuclear, Elementary Particle and High-Energy Physics, 2005 , 606, 276-280	4.2	20
252	Measurement of the leptonic decay widths of the ?-meson with the KLOE detector. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics,</i> 2005 , 608, 199-205	4.2	13
251	A direct search for the CP-violating decay . <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2005 , 619, 61-70	4.2	28
250	Measurement of the . <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2005 , 626, 15-23	4.2	30
249	Meson decay studies with the KLOE detector at DANE. <i>Nuclear Physics A</i> , 2005 , 752, 175-184	1.3	
248	The hadronic cross section measurement at KLOE. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2005 , 144, 231-237		1
247	RAP 「ACOUSTIC DETECTION OF PARTICLES: FIRST RESULTS AT 4.2 K. International Journal of Modern Physics A, 2005 , 20, 7054-7056	1.2	1
246	RAP: thermoacoustic detection at the DAINE beam test facility. <i>Classical and Quantum Gravity</i> , 2004 , 21, S1197-S1201	3.3	5
245	The SPARC/X SASE-FEL Projects. <i>Laser and Particle Beams</i> , 2004 , 22, 341-350	0.9	7
244	Determination of (le+el⇒ III from radiative processes at DANE. <i>European Physical Journal C</i> , 2004 , 33, s656-s658	4.2	4
243	Acoustic detection of particles in ultracryogenic resonant antenna (RAP). <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2004 , 518, 261-263	1.2	3
242	RAP: acoustic detection of particles in ultracryogenic resonant antenna. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2004 , 520, 205-207	1.2	
241	Status of the SPARC project. <i>Nuclear Instruments and Methods in Physics Research, Section A:</i> Accelerators, Spectrometers, Detectors and Associated Equipment, 2004 , 528, 586-590	1.2	15
240	Upper limit on the E>D ranching ratio with the KLOE detector. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2004 , 591, 49-54	4.2	13
239	Measurement of the branching ratio for the decay K∃->⊞ŪŪ with the KLOE detector. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2004 , 597, 139-144	4.2	8
238	Conceptual design of a high-brightness linac for soft X-ray SASE-FEL source. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2003 , 507, 502-506	1.2	5
237	The SPARC project: a high-brightness electron beam source at LNF to drive a SASE-FEL experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Fauinment 2003, 507, 345-349	1.2	44

(2000-2003)

236	Measurement of the ratio (KL->)/(KL->000) with the KLOE detector. <i>Physics Letters, Section B:</i> Nuclear, Elementary Particle and High-Energy Physics, 2003 , 566, 61-69	4.2	10
235	Measuring the hadronic cross section via radiative return. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2003 , 116, 243-248		8
234	Studies of Imeson radiative decays with KLOE. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2003 , 117, 677-680		
233	Study of the decay № BD with the KLOE detector. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2003 , 561, 55-60	4.2	43
232	The KLOE electromagnetic calorimeter. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 2002 , 482, 364-386	1.2	209
231	The tracking detector of the KLOE experiment. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2002 , 488, 51-73	1.2	210
230	The KLOE electromagnetic calorimeter. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 2002 , 494, 326-331	1.2	19
229	Measurement of the branching fraction for the decay KS->\delta\(\textit{D}\)Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002 , 535, 37-42	4.2	13
228	Study of the decay E>D with the KLOE detector. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2002 , 536, 209-216	4.2	96
227	Study of the decay E>00 with the KLOE detector. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2002 , 537, 21-27	4.2	136
226	Measurement of (KS->⊕())/(KS->00). Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002, 538, 21-26	4.2	16
225	Measurement of [E>D]/[E>]and the pseudoscalar mixing angle. <i>Physics Letters, Section B:</i> Nuclear, Elementary Particle and High-Energy Physics, 2002 , 541, 45-51	4.2	42
224	The KLOE drift chamber. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 2001 , 461, 25-28	1.2	10
223	Calibration and reconstruction performances of the KLOE electromagnetic calorimeter. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2001 , 461, 344-347	1.2	7
222	The KLOE trigger system. <i>Nuclear Instruments and Methods in Physics Research, Section A:</i> Accelerators, Spectrometers, Detectors and Associated Equipment, 2001 , 461, 465-469	1.2	
221	Observation of orbitally excited B mesons in pp□collisions at s=1.8 TeV. <i>Physical Review D</i> , 2001 , 64,	4.9	15
220	Search for color singlet technicolor particles in p&pmacr collisions at radicals = 1.8 TeV. <i>Physical Review Letters</i> , 2000 , 84, 1110-5	7·4	12
219	Measurement of the differential dijet mass cross section in pp□collisions at s=1.8 TeV. <i>Physical Review D</i> , 2000 , 61,	4.9	7

218	Search for the charged Higgs boson in the decays of top quark pairs in the eland Lehannels at s=1.8 TeV. <i>Physical Review D</i> , 2000 , 62,	4.9	35
217	Observation of diffractive b-quark production at the fermilab tevatron. <i>Physical Review Letters</i> , 2000 , 84, 232-7	7.4	41
216	Search for scalar top quark production in p&pmacr collisions at sqrt. <i>Physical Review Letters</i> , 2000 , 84, 5273-8	7.4	26
215	Measurement of sin2[from B->J/KS0 with the CDF detector. <i>Physical Review D</i> , 2000 , 61,	4.9	100
214	Search for a W' boson via the decay mode W'>munumu in 1.8 TeV pp collisions. <i>Physical Review Letters</i> , 2000 , 84, 5716-21	7·4	12
213	Measurement of b-quark fragmentation fractions in p&pmacr collisions at sqrt. <i>Physical Review Letters</i> , 2000 , 84, 1663-8	7.4	28
212	Transverse momentum and total cross section of e(+)e(-) pairs in the Z-boson region from p&pmacr collisions at sqrt. <i>Physical Review Letters</i> , 2000 , 84, 845-50	7.4	101
211	Search for scalar top and scalar bottom quarks in pp collisions at square root s=1.8 TeV. <i>Physical Review Letters</i> , 2000 , 84, 5704-9	7.4	49
210	Production of Upsilon(1S) mesons from chi(b) decays in p&pmacr collisions at sqrt. <i>Physical Review Letters</i> , 2000 , 84, 2094-9	7.4	97
209	Search for a fourth-generation quark more massive than the Z0 boson in p&pmacr collisions at radicals = 1.8 TeV. <i>Physical Review Letters</i> , 2000 , 84, 835-40	7.4	24
208	Measurement of the helicity of W bosons in top quark decays. <i>Physical Review Letters</i> , 2000 , 84, 216-21	7.4	46
207	A Status Report of KLOE at DANE 2000 ,		2
206	Measurement of the B0B0 oscillation frequency using lD*+ pairs and lepton flavor tags. <i>Physical Review D</i> , 1999 , 60,	4.9	15
205	Measurement of the BS0 meson lifetime using semileptonic decays. <i>Physical Review D</i> , 1999 , 59,	4.9	27
204	Search for R-Parity Violating Supersymmetry Using Like-Sign Dielectrons in pp□Collisions at B=1.8TeV. <i>Physical Review Letters</i> , 1999 , 83, 2133-2138	7.4	28
203	Search for a Technicolor I Particle in Events with a Photon and a b-Quark Jet at Fermilab. <i>Physical Review Letters</i> , 1999 , 83, 3124-3129	7.4	13
202	Measurement of Z0 and Drell-Yan production cross sections using dimuons in p□p collisions at s=1.8TeV. <i>Physical Review D</i> , 1999 , 59,	4.9	26
201	Search for Third-Generation Leptoquarks from Technicolor Models in pp□Collisions at ಔ=1.8TeV. <i>Physical Review Letters</i> , 1999 , 82, 3206-3211	7.4	15

200	Search for Bs0 B □s0 Oscillations Using the Semileptonic Decay Bs0->⊞X□ <i>Physical Review Letters</i> , 1999 , 82, 3576-3580	7.4	19
199	Measurement of b quark fragmentation fractions in the production of strange and light B mesons in pp□collisions at s=1.8TeV. <i>Physical Review D</i> , 1999 , 60,	4.9	13
198	Search for the Flavor-Changing Neutral Current Decays B+->\(\mathbb{H}\mathbb{K}\)+ and B0->\(\mathbb{H}\mathbb{K}\)*0. <i>Physical Review Letters</i> , 1999 , 83, 3378-3383	7.4	42
197	Measurement of the Top Quark Mass with the Collider Detector at Fermilab. <i>Physical Review Letters</i> , 1999 , 82, 271-276	7.4	68
196	Measurement of bb□rapidity correlations in pp□collisions at s=1.8TeV. <i>Physical Review D</i> , 1999 , 61,	4.9	6
195	Searches for new physics in diphoton events in pp□collisions at s=1.8TeV. <i>Physical Review D</i> , 1999 , 59,	4.9	40
194	Measurement of the associated \bigoplus production cross section in pp \Box collisions at s=1.8 TeV. <i>Physical Review D</i> , 1999 , 60,	4.9	4
193	Search for New Particles Decaying to bb□in pp□Collisions at 目=1.8TeV. <i>Physical Review Letters</i> , 1999 , 82, 2038-2043	7.4	21
192	Kinematics of tt□events at CDF. <i>Physical Review D</i> , 1999 , 59,	4.9	11
191	Measurement of B0 B 0 flavor oscillations using jet-charge and lepton flavor tagging in pp□ collisions at s=1.8 TeV. <i>Physical Review D</i> , 1999 , 60,	4.9	21
190	The KLOE electromagnetic calorimeter. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1999 , 78, 163-168		
189	The KLOE electromagnetic calorimeter. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1998 , 61, 126-131		
188	Quality checks and first calibration of the KLOE electromagnetic calorimeter. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1998 , 409, 558-560	1.2	3
187	The ADCs and TDCs for the KLOE electromagnetic calorimeter. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1998 , 409, 675-678	1.2	4
186	Measurement of the CP-Violation Parameter sin(2) in Bd0/BEd0->J/KS0 Decays. <i>Physical Review Letters</i> , 1998 , 81, 5513-5518	7.4	33
185	Search for Higgs Bosons Produced in Association with a Vector Boson in pp□Collisions at B=1.8TeV. <i>Physical Review Letters</i> , 1998 , 81, 5748-5753	7.4	17
184	Search for long-lived parents of Z0 bosons in pp□collisions at s=1.8TeV. <i>Physical Review D</i> , 1998 , 58,	4.9	18
183	Jet pseudorapidity distribution in direct photon events in pp□collisions at s=1.8TeV. <i>Physical Review D</i> , 1998 , 57, 1359-1365	4.9	2

182	Observation of B+->[DS)K+ and B0->[DS)K*(892)0 decays and measurements of B-meson branching fractions into J/Dand (DS) final states. <i>Physical Review D</i> , 1998 , 58,	4.9	19
181	Search for the Decays Bs0, Bd0->e⊞and Pati-Salam Leptoquarks. <i>Physical Review Letters</i> , 1998 , 81, 574	2 ₇ 54747	7 18
180	Searches for New Physics in Diphoton Events in pp□ Collisions at 目 1.8TeV. <i>Physical Review Letters</i> , 1998 , 81, 1791-1796	7.4	42
179	Measurement of the Bd0 B d0 flavor oscillation frequency and study of same side flavor tagging of B mesons in pp□collisions. <i>Physical Review D</i> , 1998 , 59,	4.9	19
178	Measurement of the Bland B0 meson lifetimes using semileptonic decays. <i>Physical Review D</i> , 1998 , 58,	4.9	18
177	Events with a Rapidity Gap between Jets in ptp Collisions at 🛭 = 630GeV. <i>Physical Review Letters</i> , 1998 , 81, 5278-5283	7.4	30
176	Search for Second Generation Leptoquarks in the Dimuon Plus Dijet Channel of pp□Collisions at B=1.8TeV. <i>Physical Review Letters</i> , 1998 , 81, 4806-4811	7.4	21
175	Measurement of the Top Quark Mass. <i>Physical Review Letters</i> , 1998 , 80, 2767-2772	7.4	73
174	Observation of Hadronic W Decays in ttll Events with the Collider Detector at Fermilab. <i>Physical Review Letters</i> , 1998 , 80, 5720-5725	7.4	11
173	Properties of photon plus two-jet events in p□p collisions at s=1.8TeV. <i>Physical Review D</i> , 1998 , 57, 67-7	7 4.9	5
172	Measurement of the Differential Cross Section for Events with Large Total Transverse Energy in pp□Collisions at s=1.8TeV. <i>Physical Review Letters</i> , 1998 , 80, 3461-3466	7.4	6
171	Measurement of B hadron lifetimes using J/Ifinal states at CDF. <i>Physical Review D</i> , 1998 , 57, 5382-5401	4.9	44
170	Search for the rare decay W⊞->Ds⊞in pp□collisions at s=1.8TeV. <i>Physical Review D</i> , 1998 , 58,	4.9	3
169	Measurement of the 【W+IIJet)/【W) Cross Section Ratiofrom p□p Collisions at 日=1.8TeV. <i>Physical Review Letters</i> , 1998 , 81, 1367-1372	7.4	6
168	Search for the decays Bd0->⊞⊡and Bs0->⊞⊡n pp□collisions at s=1.8 TeV. <i>Physical Review D</i> , 1998 , 57, R3811-R3816	4.9	59
167	Measurement of the Lepton Charge Asymmetry in W-Boson Decays Produced in pp□Collisions. <i>Physical Review Letters</i> , 1998 , 81, 5754-5759	7.4	65
166	Measurement of the tt□Production Cross Section in pp□Collisions at s=1.8TeV. <i>Physical Review Letters</i> , 1998 , 80, 2773-2778	7.4	41
165	Observation of the Bc Meson in pp□Collisions at 🛚=1.8 TeV. <i>Physical Review Letters</i> , 1998 , 81, 2432-2437	7.4	242

-	164	Search for Chargino-Neutralino Associated Production at the Fermilab Tevatron Collider. <i>Physical Review Letters</i> , 1998 , 80, 5275-5280	7.4	28	
	163	Search for the rare decay W∃->∃+Ūn proton-antiproton collisions at s=1.8 TeV. <i>Physical Review D</i> , 1998 , 58,	4.9	3	
	162	Observation of Bc mesons in pp□collisions at s=1.8TeV. <i>Physical Review D</i> , 1998 , 58,	4.9	173	
	161	Measurement of the B0 B □ Oscillation Frequency Using B Meson Charge-Flavor Correlations in pp□Collisions at s=1.8TeV. <i>Physical Review Letters</i> , 1998 , 80, 2057-2062	7.4	37	
	160	Search for Flavor-Changing Neutral Current Decays of the Top Quark in pp□Collisions at s=1.8TeV. <i>Physical Review Letters</i> , 1998 , 80, 2525-2530	7.4	124	
	159	Dijet Production by Color-Singlet Exchange at the Fermilab Tevatron. <i>Physical Review Letters</i> , 1998 , 80, 1156-1161	7.4	59	
	158	Measurement of the Top Quark Mass and tt□Production Cross Section from Dilepton Events at the Collider Detector at Fermilab. <i>Physical Review Letters</i> , 1998 , 80, 2779-2784	7.4	73	
	157	Search for New Particles Decaying into bbland Produced in Association with W Bosons Decaying into elbr lat the Fermilab Tevatron. <i>Physical Review Letters</i> , 1997 , 79, 3819-3824	7.4	21	
	156	First Observation of the All-Hadronic Decay of ttl Pairs. <i>Physical Review Letters</i> , 1997 , 79, 1992-1997	7.4	61	
:	155	Measurement of Double Parton Scattering in p□p Collisions at s}=1.8TeV. <i>Physical Review Letters</i> , 1997 , 79, 584-589	7.4	95	
·	154	Observation of B0->J/IIat the Fermilab proton-antiproton collider. <i>Physical Review D</i> , 1997 , 55, 1142-115	54 .9	38	
:	153	Search for new particles decaying to dijets at CDF. <i>Physical Review D</i> , 1997 , 55, R5263-R5268	4.9	98	
	152	Search for gluinos and squarks at the Fermilab Tevatron collider. <i>Physical Review D</i> , 1997 , 56, R1357-R13	3.62)	46	
:	151	Limits on Quark-Lepton Compositeness Scales from Dileptons Produced in 1.8 TeV pp□ Collisions. <i>Physical Review Letters</i> , 1997 , 79, 2198-2203	7.4	68	
·	150	Search for Charged Higgs Boson Decays of the Top Quark using Hadronic Decays of the Tau Lepton. <i>Physical Review Letters</i> , 1997 , 79, 357-362	7.4	87	
:	149	Measurement of Dijet Angular Distributions by the Collider Detector at Fermilab [Phys. Rev. Lett. 77, 5336 (1996)]. <i>Physical Review Letters</i> , 1997 , 78, 4307-4308	7.4	23	
	148	Evidence for W+WIProduction in pIp Collisions at s=1.8TeV. <i>Physical Review Letters</i> , 1997 , 78, 4536-4540	07.4	36	
	147	Production of J/IMesons from ☐ Meson Decays in pp□ Collisions at 屆=1.8TeV. <i>Physical Review Letters</i> , 1997 , 79, 578-583	7.4	221	

146	Search for New Gauge Bosons Decaying into Dileptons in p□p Collisions at s}=1.8TeV. <i>Physical Review Letters</i> , 1997 , 79, 2192-2197	7.4	140
145	Search for First Generation Leptoquark Pair Production in pp□Collisions at s}=1.8TeV. <i>Physical Review Letters</i> , 1997 , 79, 4327-4332	7.4	44
144	Double parton scattering in p□p collisions at s=1.8TeV. <i>Physical Review D</i> , 1997 , 56, 3811-3832	4.9	199
143	Properties of six-jet events with large six-jet mass at the Fermilab proton-antiproton collider. <i>Physical Review D</i> , 1997 , 56, 2532-2543	4.9	3
142	Measurement of bb \square production correlations, B0B \square 0 mixing, and a limit on β in pp \square collisions at s=1.8 TeV. <i>Physical Review D</i> , 1997 , 55, 2546-2558	4.9	64
141	The hand elDecays of Top Quark Pairs Produced in ppllCollisions at s=1.8TeV. <i>Physical Review Letters</i> , 1997 , 79, 3585-3590	7.4	30
140	Measurement of Diffractive Dijet Production at the Fermilab Tevatron. <i>Physical Review Letters</i> , 1997 , 79, 2636-2641	7.4	69
139	Observation of Diffractive W-Boson Production at the Fermilab Tevatron. <i>Physical Review Letters</i> , 1997 , 78, 2698-2703	7.4	78
138	J/Land (PS) Production in pp Collisions at E=1.8TeV. <i>Physical Review Letters</i> , 1997 , 79, 572-577	7.4	278
137	Search for Third Generation Leptoquarks in p□p Collisions at s=1.8TeV. <i>Physical Review Letters</i> , 1997 , 78, 2906-2911	7.4	49
136	Properties of Jets in W Boson Events from 1.8 TeV p□p Collisions. <i>Physical Review Letters</i> , 1997 , 79, 470	60 7 476	5 13
135	Status of the KLOE electromagnetic calorimeter: final optimization, progress in construction and first calibration. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1997 , 54, 14-19		5
134	Measurements of light yield, attenuation length and time response of long samples of Blue scintillating fibers. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1996 , 370, 367-371	1.2	16
133	The electromagnetic calorimeter of the KLOE experiment at DANE. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1996 , 379, 511-514	1.2	2
132	Performance of fine mesh photomultiplier tubes in magnetic fields up to 0.3 T. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1996 , 368, 628-634	1.2	6
131	Forward-Backward Charge Asymmetry of Electron Pairs above the Z0 Pole. <i>Physical Review Letters</i> , 1996 , 77, 2616-2621	7.4	25
130	Measurements of the B- and B-bar0 meson lifetimes using semileptonic decays. <i>Physical Review Letters</i> , 1996 , 76, 4462-4467	7.4	15
129	Search for gluino and squark cascade decays at the Fermilab tevatron collider. <i>Physical Review Letters</i> , 1996 , 76, 2006-2010	7.4	35

128	Search for flavor-changing neutral current B meson decays in pp-bar collisions at sqrt s=1.8 TeV. <i>Physical Review Letters</i> , 1996 , 76, 4675-4680	7.4	24	
127	Search for charged Higgs boson decays of the top quark using hadronic tau decays. <i>Physical Review D</i> , 1996 , 54, 735-742	4.9	17	
126	Ratios of bottom meson branching fractions involving J/psi mesons and determination of b quark fragmentation fractions. <i>Physical Review D</i> , 1996 , 54, 6596-6609	4.9	28	
125	Reconstruction of B0>J/ psi K0S and measurement of ratios of branching ratios involving B>J/psi K* and B+>J/psi K+. <i>Physical Review Letters</i> , 1996 , 76, 2015-2020	7.4	22	
124	Measurement of Dijet Angular Distributions by the Collider Detector at Fermilab. <i>Physical Review Letters</i> , 1996 , 77, 5336-5341	7.4	70	
123	Measurement of Lambda 0b Lifetime Using Lambda 0b> Lambda +c. <i>Physical Review Letters</i> , 1996 , 77, 1439-1443	7.4	26	
122	Inclusive Jet Cross Section in p-barp Collisions at sqrt s=1.8 TeV. <i>Physical Review Letters</i> , 1996 , 77, 438-	-4 4 3 ₄	185	
121	Properties of Jets in Z Boson Events from 1.8 TeV p-barp Collisions. <i>Physical Review Letters</i> , 1996 , 77, 448-453	7.4	16	
120	Measurement of the Branching Fraction B(B+u>J/ psi pi +) and Search for B+c>J/ psi pi +. <i>Physical Review Letters</i> , 1996 , 77, 5176-5181	7.4	17	
119	Measurement of the gamma +D*+/- Cross Section in p-barp Collisions at sqrt s=1.8 TeV. <i>Physical Review Letters</i> , 1996 , 77, 5005-5010	7.4	3	
118	Measurement of sigma B(W>e nu) and sigma B(Z0>e+e-) in pp-bar collisions at sqrt s = 1.8 TeV. <i>Physical Review Letters</i> , 1996 , 76, 3070-3075	7.4	59	
117	Search for the rare decay W+/> pi +/-+ gamma. <i>Physical Review Letters</i> , 1996 , 76, 2852-2857	7.4	6	
116	Measurement of correlated micro-b-bar jet cross sections in pp-bar collisions at s=1.8 TeV. <i>Physical Review D</i> , 1996 , 53, 1051-1065	4.9	40	
115	Search for chargino-neutralino production in pp-bar collisons at sqrt s=1.8 TeV. <i>Physical Review Letters</i> , 1996 , 76, 4307-4311	7.4	19	
114	Measurement of the Lifetime of the B0s Meson Using the Exclusive Decay Mode B0s>J/ psi phi. <i>Physical Review Letters</i> , 1996 , 77, 1945-1949	7.4	12	
113	Measurement of the mass of the Bs0 meson. <i>Physical Review D</i> , 1996 , 53, 3496-3505	4.9	9	
112	Further properties of high-mass multijet events at the Fermilab proton-antiproton collider. <i>Physical Review D</i> , 1996 , 54, 4221-4233	4.9	12	
111	Construction and performance of the lead-scintillating fiber calorimeter prototypes for the KLOE detector. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 1995 , 354, 352-363	1.2	28	

110	Upsilon production in pp-bar collisions at sqrt s=1.8 TeV. <i>Physical Review Letters</i> , 1995 , 75, 4358-4363	7.4	77
109	Measurement of the Bs meson lifetime. <i>Physical Review Letters</i> , 1995 , 74, 4988-4992	7.4	18
108	Search for new particles decaying to dijets in pp-bar collisions at sqrt s=1.8 TeV. <i>Physical Review Letters</i> , 1995 , 74, 3538-3543	7.4	56
107	Properties of high-mass multijet events at the Fermilab proton-antiproton collider. <i>Physical Review Letters</i> , 1995 , 75, 608-612	7.4	24
106	Measurement of the ratio sigma B(pp-bar>W>e nu)/ sigma B(pp-bar>Z0>ee) in pp-bar collisions at sqrt s =1800 GeV. <i>Physical Review D</i> , 1995 , 52, 2624-2655	4.9	45
105	Limits on Z-photon couplings from p-p-bar interactions at sqrt s=1.8TeV. <i>Physical Review Letters</i> , 1995 , 74, 1941-1945	7.4	33
104	Precision Measurement of the Prompt Photon Cross Section in pp□Collisions at s=1.8 TeV. <i>Physical Review Letters</i> , 1995 , 74, 1891-1893	7.4	19
103	Identification of top quarks using kinematic variables. <i>Physical Review D</i> , 1995 , 52, R2605-R2609	4.9	22
102	Measurement of the polarization in the decays Bd>J/ psi K*0 and Bs>J/ psi phi. <i>Physical Review Letters</i> , 1995 , 75, 3068-3072	7.4	22
101	Search for charged bosons heavier than the W boson in pp-bar collisions at sqrt s=1800 GeV. <i>Physical Review Letters</i> , 1995 , 74, 2900-2904	7.4	42
100	Measurement of the B Meson Differential Cross Section d sigma /dpT in pp-bar Collisions at sqrt s=1.8 TeV. <i>Physical Review Letters</i> , 1995 , 75, 1451-1455	7.4	116
99	Observation of rapidity gaps in p-barp collisions at 1.8 TeV. <i>Physical Review Letters</i> , 1995 , 74, 855-859	7.4	64
98	Search for second generation leptoquarks in pp-bar collisions at sqrt s=1.8 TeV. <i>Physical Review Letters</i> , 1995 , 75, 1012-1016	7.4	22
97	Measurement of W-photon couplings in p-p-bar collisions at sqrt s=1.8 TeV. <i>Physical Review Letters</i> , 1995 , 74, 1936-1940	7.4	57
96	Kinematic evidence for top quark pair production in W+multijet events in pp-bar collisions at sqrt s =1.8 TeV. <i>Physical Review D</i> , 1995 , 51, 4623-4637	4.9	29
95	Study of tp-bar collisions using total transverse energy. <i>Physical Review Letters</i> , 1995 , 75, 3997-4002	7.4	18
94	Measurement of the W boson mass. <i>Physical Review Letters</i> , 1995 , 75, 11-16	7.4	73
93	Charge asymmetry in W-boson decays produced in pp-bar collisions at sqrt s= 1.8 TeV. <i>Physical Review Letters</i> , 1995 , 74, 850-854	7.4	56

92	Search for squarks and gluinos via radiative decays of neutralinos in proton-antiproton collisions at sqrt s=1.8TeV. <i>Physical Review Letters</i> , 1995 , 75, 613-617	7.4	9
91	Limits on WWZ and WW gamma couplings from WW and WZ production in pp-bar collisions at sqrt s=1.8TeV. <i>Physical Review Letters</i> , 1995 , 75, 1017-1022	7.4	51
90	Direct measurement of the W boson width. <i>Physical Review Letters</i> , 1995 , 74, 341-345	7.4	23
89	Observation of Top Quark Production in p-barp Collisions with the Collider Detector at Fermilab. <i>Physical Review Letters</i> , 1995 , 74, 2626-2631	7.4	1067
88	Measurement of the W boson mass. <i>Physical Review D</i> , 1995 , 52, 4784-4827	4.9	89
87	The KLOE electromagnetic calorimeter. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 1995 , 360, 201-205	1.2	9
86	Measurement of the B+ and B0 meson lifetimes. <i>Physical Review Letters</i> , 1994 , 72, 3456-3460	7.4	23
85	Measurement of p-barp single diffraction dissociation at sqrt s =546 and 1800 GeV. <i>Physical Review D</i> , 1994 , 50, 5535-5549	4.9	96
84	Evidence for top quark production in p-barp collisions at sqrt s =1.8 TeV. <i>Physical Review D</i> , 1994 , 50, 2966-3026	4.9	384
83	Measurement of small angle antiproton-proton elastic scattering at sqrt s =546 and 1800 GeV. <i>Physical Review D</i> , 1994 , 50, 5518-5534	4.9	124
82	Measurement of the ratio sigma B(W>e nu)/ sigma B(Z0>e+e-) in p-barp collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1994 , 73, 220-224	7.4	30
81	Search for excited quarks in pp-bar collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1994 , 72, 3004	-3 9.0 48	29
80	Search for the top quark decaying to a charged Higgs boson in p-barp collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1994 , 73, 2667-2671	7.4	16
79	Evidence for top quark production in p-barp collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1994 , 73, 225-231	7.4	338
78	W boson+jet angular distribution in pp-bar collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1994 , 73, 2296-2300	7.4	5
77	Search for the top quark decaying to a charged Higgs boson in p p-bar collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1994 , 72, 1977-1981	7.4	16
76	Measurement of Drell-Yan electron and muon pair differential cross sections in p-barp collisions at sqrt s =1.8 TeV. <i>Physical Review D</i> , 1994 , 49, R1-R6	4.9	26
75	Evidence for color coherence in pp-bar collisions at sqrt s =1.8 TeV. <i>Physical Review D</i> , 1994 , 50, 5562-5	57499	34

74	Measurement of the B meson and b quark cross sections at sqrt s =1.8 TeV using the exclusive decay B0>J/ psi K*(892)0. <i>Physical Review D</i> , 1994 , 50, 4252-4257	4.9	23
73	KLOE at DANE. Nuclear Physics, Section B, Proceedings Supplements, 1994 , 37, 43-50		
72	Precision measurement of the prompt photon cross section in pp-bar collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1994 , 73, 2662-2666	7.4	91
71	Measurement of the antiproton-proton total cross section at sqrt s =546 and 1800 GeV. <i>Physical Review D</i> , 1994 , 50, 5550-5561	4.9	164
70	Comparison of jet production in p-barp collisions at sqrt s =546 and 1800 GeV. <i>Physical Review Letters</i> , 1993 , 70, 1376-1380	7.4	42
69	Measurement of jet multiplicity in W events produced in pp-bar collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1993 , 70, 4042-4046	7.4	15
68	Search for first-generation leptoquarks in p-barp collisions at sqrt s =1.8 TeV. <i>Physical Review D</i> , 1993 , 48, R3939-R3944	4.9	30
67	Search for quark compositeness, axigluons, and heavy particles using the dijet invariant mass spectrum observed in pp-bar collisions. <i>Physical Review Letters</i> , 1993 , 71, 2542-2546	7.4	27
66	Inclusive chi c and b-quark production in p-barp collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1993 , 71, 2537-2541	7.4	89
65	Prompt photon cross section measurement in p-barp collisions at sqrt s =1.8 TeV. <i>Physical Review D</i> , 1993 , 48, 2998-3025	4.9	61
64	Measurement of bottom quark production in 1.8 TeV pp-bar collisions using muons from b-quark decays. <i>Physical Review Letters</i> , 1993 , 71, 2396-2400	7.4	65
63	Measurement of jet shapes in p-barp collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1993 , 70, 713	-7/14	36
62	Measurement of the cross section for production of two isolated prompt photons in pp-bar collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1993 , 70, 2232-2236	7.4	30
61	Search for Lambda b>J/ psi Lambda 0 in pp-bar collisions at sqrt s =1.8 TeV. <i>Physical Review D</i> , 1993 , 47, R2639-R2643	4.9	13
60	Study of four-jet events and evidence for double parton interactions in pp-bar collisions at sqrt s =1.8 TeV. <i>Physical Review D</i> , 1993 , 47, 4857-4871	4.9	131
59	Measurement of the dijet mass distribution in pp-bar collisions at sqrt s =1.8 TeV. <i>Physical Review D</i> , 1993 , 48, 998-1008	4.9	15
58	Center-of-mass angular distribution of prompt photons produced in pp-bar collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1993 , 71, 679-683	7.4	7
57	Measurement of the production and muonic decay rate of W and Z bosons in pp-bar collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1992 , 69, 28-32	7.4	36

56	Search for New Gauge Bosons in p-barp Collisions at s=1.8 TeV. <i>Physical Review Letters</i> , 1992 , 68, 1463-7	1#647	48
55	Search for squarks and gluinos from p-barp collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1992 , 69, 3439-3443	7.4	117
54	Dijet angular distribution in pp-bar collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1992 , 69, 2896-2	2 9 040	22
53	Limit on the rare decay W+/> gamma pi +/- in pp-bar collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1992 , 69, 2160-2163	7.4	4
52	Measurement of the isolated prompt photon cross section in p-barp collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1992 , 68, 2734-2738	7.4	47
51	Inclusive jet cross section in p-barp collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1992 , 68, 1104-7	1 1 048	75
50	Measurement of the ratio B(W> tau nu)/B(W>e nu) in pp-bar collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1992 , 68, 3398-3402	7.4	20
49	Properties of events with large total transverse energy produced in proton-antiproton collisions at sqrt s =1.8 TeV. <i>Physical Review D</i> , 1992 , 45, 2249-2263	4.9	8
48	Lepton asymmetry in W-boson decays from p-barp collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1992 , 68, 1458-1462	7.4	9
47	Topology of three-jet events in p-barp collisions at sqrt s =1.8 TeV. <i>Physical Review D</i> , 1992 , 45, 1448-14	58 9	243
46	Inclusive J/ psi, psi (2S), and b-quark production in p-barp collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1992 , 69, 3704-3708	7.4	230
45	Measurement of the B-meson and b-quark cross sections at sqrt s =1.8 TeV using the exclusive decay B+/>J/ psi K+/ <i>Physical Review Letters</i> , 1992 , 68, 3403-3407	7.4	36
44	Limits on the production of massive stable charged particles. <i>Physical Review D</i> , 1992 , 46, R1889-R1894	4.9	25
43	Limit on the top-quark mass from proton-antiproton collisions at sqrt s =1.8 TeV. <i>Physical Review D</i> , 1992 , 45, 3921-3948	4.9	69
42	Lower limit on the top-quark mass from events with two leptons in pp-bar collisions at sqrt s = 1.8 TeV. <i>Physical Review Letters</i> , 1992 , 68, 447-451	7.4	130
41	Measurement of the W-boson PT distribution in p-barp collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1991 , 66, 2951-2955	7.4	38
40	Top-quark search in the electron+jets channel in proton-antiproton collisions at sqrt s =1.8 TeV. <i>Physical Review D</i> , 1991 , 43, 664-686	4.9	38
39	Measurement of the W-boson mass in 1.8-TeV p-barp collisions. <i>Physical Review D</i> , 1991 , 43, 2070-2093	4.9	90

38	Measurement of the Z-boson pT distribution in p-barp collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1991 , 67, 2937-2941	7.4	29
37	Measurement of sigma B(W>e nu) and sigma B(Z0>e+e-) in p-barp collisions at sqrt s =1800 GeV. <i>Physical Review D</i> , 1991 , 44, 29-52	4.9	61
36	Search for W'>e nu and W'> micro nu in p-barp Collisions at s=1.8 TeV. <i>Physical Review Letters</i> , 1991 , 67, 2609-2613	7:4	29
35	Measurement of the e+e- Invariant-Mass Distribution in p-barp Collisions at s=1.8 TeV. <i>Physical Review Letters</i> , 1991 , 67, 2418-2422	7.4	30
34	Measurement of QCD jet broadening in pp-bar collisions at sqrt s =1.8 TeV. <i>Physical Review D</i> , 1991 , 44, 601-616	4.9	11
33	Determinaiton of sin2 theta -barW from the forward-backward asymmetry in pp-bar>Z0X>e+e-X interactions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1991 , 67, 1502-1506	7.4	10
32	Measurement of B0B-bar0 mixing at the Fermilab Tevatron Collider. <i>Physical Review Letters</i> , 1991 , 67, 3351-3355	7.4	23
31	The small angle spectrometer of CDF. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1990 , 289, 375-383	1.2	1
30	Measurement of the W-boson mass. <i>Physical Review Letters</i> , 1990 , 65, 2243-2246	7.4	128
29	Search for a light Higgs boson at the Fermilab Tevatron proton-antiproton collider. <i>Physical Review D</i> , 1990 , 41, 1717-1721	4.9	2
28	Search for new heavy quarks in electron-muon events at the Fermilab Tevatron Collider. <i>Physical Review Letters</i> , 1990 , 64, 147-151	7.4	93
27	Two-jet differential cross section in pp-bar collisions at sqrt s-bar11.8 TeV. <i>Physical Review Letters</i> , 1990 , 64, 157-160	7.4	15
26	Jet-fragmentation properties in p-barp collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1990 , 65, 968-971	7.4	27
25	Search for the top quark in the reaction p-barp>electron+jets at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1990 , 64, 142-146	7.4	153
24	Measurement of D production in jets from p-barp collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1990 , 64, 348-352	7.4	12
23	Measurement of the ratio sigma (W>e nu)/ sigma (Z>ee) in p-barp collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1990 , 64, 152-156	7.4	28
22	Two-jet invariant-mass distribution at sqrt s =1.8 TeV. <i>Physical Review D</i> , 1990 , 41, 1722-1725	4.9	37
21	Pseudorapidity distributions of charged particles produced in p-barp interactions at sqrt s =630 and 1800 GeV. <i>Physical Review D</i> , 1990 , 41, 2330-2333	4.9	171

20	Limits on the masses of supersymmetric particles from 1.8-TeV pp-bar collisions. <i>Physical Review Letters</i> , 1989 , 62, 1825-1828	7.4	109
19	Measurement of W-boson production in 1.8-TeV p-barp collisions. <i>Physical Review Letters</i> , 1989 , 62, 100)5 7 .1400	826
18	Measurement of the inclusive jet cross section in p-barp collisions at sqrt s =1.8 TeV. <i>Physical Review Letters</i> , 1989 , 62, 613-616	7.4	69
17	Measurement of the mass and width of the Z0 boson at the Fermilab Tevatron. <i>Physical Review Letters</i> , 1989 , 63, 720-723	7.4	82
16	Search for heavy stable particles in 1.8-TeV pp-bar collisions at the Fermilab collider. <i>Physical Review Letters</i> , 1989 , 63, 1447-1450	7.4	24
15	Dijet angular distributions from p-barp collisions at sqrt s=1.8 TeV. <i>Physical Review Letters</i> , 1989 , 62, 3020-3023	7.4	23
14	KOS production in p-barp interactions at sqrt a=630 and 1800 GeV. <i>Physical Review D</i> , 1989 , 40, 3791-37	94 9	19
13	The CDF detector: an overview. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1988 , 271, 387-403	1.2	415
12	The CDF central and endwall hadron calorimeter. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 1988 , 267, 301-31	4 ^{1.2}	131
11	Transverse-momentum distributions of charged particles produced in p-barp interactions at sqrt s-bar=630 and 1800 GeV. <i>Physical Review Letters</i> , 1988 , 61, 1819-1822	7.4	172
10	Influence of magnetic fields on the response of acrylic scintillators. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1987 , 254, 561-562	1.2	17
9	Construction and performance of silicon detectors for the small angle spectrometers of the collider detector of fermilab. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 1987 , 253, 537-541	1.2	1
8	Position sensitive silicon detectors inside the tevatron collider. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1986 , 252, 467-470	1.2	3
7	Test of a drift chamber with second coordinate readout by charge division. <i>Nuclear Instruments & Methods in Physics Research</i> , 1982 , 192, 223-230		1
6	High performance, low cost shower detectors for low energy Prays. <i>Nuclear Instruments & Methods</i> , 1980 , 178, 401-409		5
5	Experimental confirmation of the 1100 structure and first observation of the leptonic decay of the 🛚 🗓 (1250) 1979 , 49, 207-216		20
4	Measurement of the photoproduction phases of the ∏and? mesons 1978 , 44, 587-598		2
3	A search for new vector mesons in the mass range between 0.9 and 2.2 GeV 1977 , 39, 374-402		11

The Project Plasmonx for Plasma Acceleration Experiments and A Thomson X-Ray Source at SPARC

2

Status report on DA/spl Phi/NE

3