Amina A Qutub

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8012903/publications.pdf Version: 2024-02-01

AMINA A OUTUR

#	Article	IF	CITATIONS
1	Clinical relevance of proteomic profiling in de novo pediatric acute myeloid leukemia: a Children's Oncology Group study. Haematologica, 2022, , .	1.7	7
2	cytoNet: Spatiotemporal network analysis of cell communities. PLoS Computational Biology, 2022, 18, e1009846.	1.5	3
3	Integrins and extracellular matrix proteins modulate adipocyte thermogenic capacity. Scientific Reports, 2021, 11, 5442.	1.6	23
4	Decoupling Lineage-Associated Genes in Acute Myeloid Leukemia Reveals Inflammatory and Metabolic Signatures Associated With Outcomes. Frontiers in Oncology, 2021, 11, 705627.	1.3	7
5	Differential proteome profile, biological pathways, and network relationships of osteogenic proteins in calcified human aortic valves. Heart and Vessels, 2021, , 1.	0.5	2
6	A novel self-organizing embryonic stem cell system reveals signaling logic underlying the patterning of human ectoderm. Development (Cambridge), 2019, 146, .	1.2	44
7	Image-based Classification of Tumor Type and Growth Rate using Machine Learning: a preclinical study. Scientific Reports, 2019, 9, 12529.	1.6	32
8	Proteomic Profiling of Acute Promyelocytic Leukemia Identifies Two Protein Signatures Associated with Relapse. Proteomics - Clinical Applications, 2019, 13, 1800133.	0.8	7
9	LGALS3 is connected to CD74 in a previously unknown protein network that is associated with poor survival in patients with AML. EBioMedicine, 2019, 44, 126-137.	2.7	14
10	A quantitative analysis of heterogeneities and hallmarks in acute myelogenous leukaemia. Nature Biomedical Engineering, 2019, 3, 889-901.	11.6	27
11	Proteomic Landscape of Acute Leukemia: A Comparison between ALL and AML in Adults. Blood, 2019, 134, 1461-1461.	0.6	0
12	Histone Modification Patterns Using RPPAâ€Based Profiling Predict Outcome in Acute Myeloid Leukemia Patients. Proteomics, 2018, 18, e1700379.	1.3	11
13	Recognition of Recurrent Protein Expression Patterns in Pediatric Acute Myeloid Leukemia Identified New Therapeutic Targets. Molecular Cancer Research, 2018, 16, 1275-1286.	1.5	16
14	Recurrent Patterns of Protein Expression Signatures in Pediatric Acute Lymphoblastic Leukemia: Recognition and Therapeutic Guidance. Molecular Cancer Research, 2018, 16, 1263-1274.	1.5	12
15	Mycoplasma contamination of leukemic cell lines alters protein expression determined by reverse phase protein arrays. Cytotechnology, 2018, 70, 1529-1535.	0.7	7
16	Proteomics in Acute Myeloid Leukemia. , 2018, , .		1
17	Advances in Clioblastoma Multiforme Treatment: New Models for Nanoparticle Therapy. Frontiers in Physiology, 2018, 9, 170.	1.3	110
18	Shrinkage Clustering: a fast and size-constrained clustering algorithm for biomedical applications. BMC Bioinformatics, 2018, 19, 19.	1.2	27

Αμινά Α Qutub

#	Article	IF	CITATIONS
19	Shining a light on cell signaling in leukemia through proteomics: relevance for the clinic. Expert Review of Proteomics, 2018, 15, 613-622.	1.3	3
20	Classification of brain tumors using texture based analysis of T1-post contrast MR scans in a preclinical model. , 2018, , .		0
21	IDENTIFYING CANCER SPECIFIC METABOLIC SIGNATURES USING CONSTRAINT-BASED MODELS. , 2017, 22, 485-496.		4
22	GAIN: A graphical method to automatically analyze individual neurite outgrowth. Journal of Neuroscience Methods, 2017, 283, 62-71.	1.3	6
23	Evolutionâ€informed modeling improves outcome prediction for cancers. Evolutionary Applications, 2017, 10, 68-76.	1.5	13
24	p53 pathway dysfunction is highly prevalent in acute myeloid leukemia independent of TP53 mutational status. Leukemia, 2017, 31, 1296-1305.	3.3	87
25	Reconstruction of Tissue-Specific Metabolic Networks Using CORDA. PLoS Computational Biology, 2016, 12, e1004808.	1.5	113
26	Inferring causal molecular networks: empirical assessment through a community-based effort. Nature Methods, 2016, 13, 310-318.	9.0	209
27	Endothelial cells decode VEGF-mediated Ca ²⁺ signaling patterns to produce distinct functional responses. Science Signaling, 2016, 9, ra20.	1.6	85
28	A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis. PLoS Computational Biology, 2016, 12, e1004890.	1.5	28
29	Functional Proteomic Profiling of Myelodysplastic Syndromes Reveals Distinct Protein Expression Signatures and Identifies Candidate Therapeutic Targets. Blood, 2016, 128, 1975-1975.	0.6	0
30	Recurrent Patterns of Protein Expression Signatures in Pediatric Acute Lymphoblastic Leukemia: Recognition and Therapeutic Guidance. Blood, 2016, 128, 4089-4089.	0.6	0
31	Recognition of Recurrent Protein Expression Patterns in Pediatric Acute Myeloid Leukemia Suggests New Therapeutic Targets. Blood, 2016, 128, 1712-1712.	0.6	0
32	Progeny Clustering: A Method to Identify Biological Phenotypes. Scientific Reports, 2015, 5, 12894.	1.6	36
33	Recapitulation and Modulation of the Cellular Architecture of a User-Chosen Cell of Interest Using Cell-Derived, Biomimetic Patterning. ACS Nano, 2015, 9, 6128-6138.	7.3	20
34	Angiogenesis, Computational Modeling Perspective. , 2015, , 58-67.		2
35	Simulation Predicts IGFBP2-HIF1α Interaction Drives Glioblastoma Growth. PLoS Computational Biology, 2015, 11, e1004169.	1.5	19
36	Predicting internal cell fluxes at sub-optimal growth. BMC Systems Biology, 2015, 9, 18.	3.0	10

Αμινά Α Qutub

#	Article	IF	CITATIONS
37	CREB/ATF Family Protein Expression States in AML: Active CREB1, but Not ATF Is an Adverse Prognostic Factor. Blood, 2014, 124, 2344-2344.	0.6	2
38	Adhesion Signaling States in AML. Blood, 2014, 124, 2386-2386.	0.6	1
39	Cells as state machines: Cell behavior patterns arise during capillary formation as a function of BDNF and VEGF. Journal of Theoretical Biology, 2013, 326, 43-57.	0.8	18
40	Systems approaches for synthetic biology: a pathway toward mammalian design. Frontiers in Physiology, 2013, 4, 285.	1.3	8
41	Predicting Endothelial Cell Phenotypes in Angiogenesis. , 2013, , .		3
42	Proteomic Profiling Identifies Distinct Protein Patterns in Acute Myelogenous Leukemia CD34+CD38- Stem-Like Cells. PLoS ONE, 2013, 8, e78453.	1.1	48
43	Hippo Pathway (HP) Activity In Acute Myelogenous Leukemia (AML): Different Prognostic Implications Of TAZ versus YAP Inactivation By Phosphorylation. Blood, 2013, 122, 1337-1337.	0.6	3
44	A Global Proteomic Pathway Map In Acute Myeloid Leukemia (AML). Blood, 2013, 122, 1302-1302.	0.6	0
45	Classification Of Acute Myelogenous Leukemia (AML) Based On Functionally Related Proteins Groups. Blood, 2013, 122, 492-492.	0.6	Ο
46	Recurrent Patterns Of Histone Methylation and Acetylation Regulating Protein Expression In Acute Myelogenous Leukemia (AML). Blood, 2013, 122, 3733-3733.	0.6	0
47	Multiplexed Inâ€Situ Immunofluorescence Using Dynamic DNA Complexes. Angewandte Chemie - International Edition, 2012, 51, 9292-9296.	7.2	57
48	Network analysis of reverse phase protein expression data: Characterizing protein signatures in acute myeloid leukemia cytogenetic categories t(8;21) and inv(16). Proteomics, 2012, 12, 2084-2093.	1.3	10
49	Computational models of VEGF-associated angiogenic processes in cancer. Mathematical Medicine and Biology, 2012, 29, 85-94.	0.8	22
50	Abnormal expression of FL11 protein is an adverse prognostic factor in acute myeloid leukemia. Blood, 2011, 118, 5604-5612.	0.6	58
51	Module-based multiscale simulation of angiogenesis in skeletal muscle. Theoretical Biology and Medical Modelling, 2011, 8, 6.	2.1	60
52	Systems biology of proâ€angiogenic therapies targeting the VEGF system. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2, 694-707.	6.6	80
53	Patient-Specific Modeling of Hypoxic Response and Microvasculature Dynamics. , 2010, , 183-201.		1
54	Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Systems Biology, 2009, 3, 13.	3.0	103

Αμινά Α Qutub

#	Article	IF	CITATIONS
55	Multiscale models of angiogenesis. IEEE Engineering in Medicine and Biology Magazine, 2009, 28, 14-31.	1.1	139
56	Integration of angiogenesis modules at multiple scales: from molecular to tissue. Pacific Symposium on Biocomputing, 2009, , 316-27.	0.7	14
57	Reactive Oxygen Species Regulate Hypoxia-Inducible Factor 1α Differentially in Cancer and Ischemia. Molecular and Cellular Biology, 2008, 28, 5106-5119.	1.1	167
58	INTEGRATION OF ANGIOGENESIS MODULES AT MULTIPLE SCALES: FROM MOLECULAR TO TISSUE. , 2008, , .		9
59	Three autocrine feedback loops determine HIF1α expression in chronic hypoxia. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 1511-1525.	1.9	40
60	Three autocrine feedback loops determine HIF1α expression in chronic hypoxia. FASEB Journal, 2007, 21, A857.	0.2	4
61	A computational model of intracellular oxygen sensing by hypoxia-inducible factor HIF1α. Journal of Cell Science, 2006, 119, 3467-3480.	1.2	88
62	Glucose transport to the brain: A systems model. Brain Research Reviews, 2005, 49, 595-617.	9.1	81
63	cytoNet: Network Analysis of Cell Communities. SSRN Electronic Journal, 0, , .	0.4	0