
David J Eve

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8012469/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Retrospective Case Series of Traumatic Brain Injury and Post-Traumatic Stress Disorder Treated with Hyperbaric Oxygen Therapy. Cell Transplantation, 2019, 28, 885-892.	2.5	4
2	Human Bone Marrow Endothelial Progenitor Cell Transplantation into Symptomatic ALS Mice Delays Disease Progression and Increases Motor Neuron Survival by Repairing Blood-Spinal Cord Barrier. Scientific Reports, 2019, 9, 5280.	3.3	29
3	Reduction of microhemorrhages in the spinal cord of symptomatic ALS mice after intravenous human bone marrow stem cell transplantation accompanies repair of the blood-spinal cord barrier. Oncotarget, 2018, 9, 10621-10634.	1.8	23
4	Hyperbaric oxygen therapy as a potential treatment for post-traumatic stress disorder associated with traumatic brain injury. Neuropsychiatric Disease and Treatment, 2016, Volume 12, 2689-2705.	2.2	22
5	Plasma Derived from Human Umbilical Cord Blood Modulates Mitogen-Induced Proliferation of Mononuclear Cells Isolated from the Peripheral Blood of ALS Patients. Cell Transplantation, 2016, 25, 963-971.	2.5	9
6	Disease and Stem Cell-Based Analysis of the 2014 ASNTR Meeting. Cell Medicine, 2015, 7, 133-142.	5.0	1
7	Adult Stem Cell Transplantation: Is Gender a Factor in Stemness?. International Journal of Molecular Sciences, 2014, 15, 15225-15243.	4.1	23
8	Disease and Stem Cell-Based Analysis of the 2013 ASNTR Meeting. Cell Medicine, 2014, 6, 129-133.	5.0	0
9	Umbilical Cord Blood Cells in the Repair of Central Nervous System Diseases. , 2014, , 269-287.		7
10	Different Sources of Stem Cells for Transplantation Therapy in Stroke. , 2013, , 29-46.		3
11	The Battle of the Sexes for Stroke Therapy: Female- Versus Male-Derived Stem Cells. CNS and Neurological Disorders - Drug Targets, 2013, 12, 405-412.	1.4	7
12	Neurological disorders and the potential role for stem cells as a therapy. British Medical Bulletin, 2012, 101, 163-181.	6.9	38
13	Advantages and challenges of alternative sources of adult-derived stem cells for brain repair in stroke. Progress in Brain Research, 2012, 201, 99-117.	1.4	29
14	Multiple Intravenous Administrations of Human Umbilical Cord Blood Cells Benefit in a Mouse Model of ALS. PLoS ONE, 2012, 7, e31254.	2.5	53
15	Human Umbilical Cord Blood Cells for Stroke. , 2011, , 155-167.		1
16	A Showcase of Bench-to-Bedside Regenerative Medicine at the 2010 ASNTR. Scientific World Journal, The, 2011, 11, 1842-1864.	2.1	1
17	Article Commentary: Technology and Innovation: 2010 a Year in Review. Cell Transplantation, 2011, 20, 1315-1318.	2.5	0
18	The Treatment of Neurodegenerative Disorders Using Umbilical Cord Blood and Menstrual Blood-Derived Stem Cells. Cell Transplantation, 2011, 20, 85-94.	2.5	65

David J Eve

#	Article	IF	CITATIONS
19	Acute Treatment with Herbal Extracts Provides Neuroprotective Benefits in in Vitro and in vivo Stroke Models, Characterized by Reduced Ischemic Cell Death and Maintenance of Motor and Neurological Functions. Cell Medicine, 2010, 1, 137-142.	5.0	3
20	Stem Cell Research in Cell Transplantation: Sources, Geopolitical Influence, and Transplantation. Cell Transplantation, 2010, 19, 1493-1509.	2.5	17
21	Mankind's first natural stem cell transplant. Journal of Cellular and Molecular Medicine, 2010, 14, 488-495.	3.6	34
22	Increased Neuronal Proliferation in the Dentate Gyrus of Aged Rats Following Neural Stem Cell Implantation. Stem Cells and Development, 2010, 19, 175-180.	2.1	48
23	Stem cells have the potential to rejuvenate regenerative medicine research. Medical Science Monitor, 2010, 16, RA197-217.	1.1	9
24	Methodological study investigating long term laser Doppler measured cerebral blood flow changes in a permanently occluded rat stroke model. Journal of Neuroscience Methods, 2009, 180, 52-56.	2.5	7
25	Inflammation and Stem Cell Migration to the Injured Brain in Higher Organisms. Stem Cells and Development, 2009, 18, 693-702.	2.1	51
26	Human Umbilical Cord Blood Cell Grafts for Brain Ischemia. Cell Transplantation, 2009, 18, 985-998.	2.5	88
27	The translational neuroscientist's melting pot: Immunology, cell transplantation and other delivery systems, and enlightenment of disease etiology and treatment. Neurotoxicity Research, 2008, 13, 281-290.	2.7	0
28	Stem Cell Research and Health Education. American Journal of Health Education, 2008, 39, 167-179.	0.6	9
29	Stem Cell Research and Health Education. American Journal of Health Education, 2008, 39, 167-179.	0.6	4
30	Navigating cellular repair for the central nervous system. Clinical Neurosurgery, 2008, 55, 133-7.	0.2	0
31	Umbilical cord blood transfusions for prevention of progressive brain injury and induction of neural recovery: an immunological perspective. Regenerative Medicine, 2007, 2, 457-464.	1.7	25
32	Article Commentary: Stem Cell Research in Cell Transplantation: An Analysis of Geopolitical Influence by Publications. Cell Transplantation, 2007, 16, 867-873.	2.5	5
33	Article Commentary: Regenerative Medicine: An Analysis of Cell Transplantation's Impact. Cell Transplantation, 2007, 16, 751-764.	2.5	2
34	Long-term cultured human umbilical cord neural-like cells transplanted into the striatum of NOD SCID mice. Brain Research Bulletin, 2007, 74, 155-163.	3.0	31
35	Transcription factor p53 in degenerating spinal cords. Brain Research, 2007, 1150, 174-181.	2.2	39
36	The â€~current state of play' in transplantation and restoration research of the CNS. Neurotoxicity Research, 2007, 11, 145-150.	2.7	2

David J Eve

#	Article	IF	CITATIONS
37	Regenerative medicine: an analysis of Cell Transplantation's impact. Cell Transplantation, 2007, 16, 751-64.	2.5	1
38	Stem cell research in Cell Transplantation: an analysis of geopolitical influence by publications. Cell Transplantation, 2007, 16, 867-73.	2.5	3
39	Locomotor hyperactivity and alterations in dopamine neurotransmission are associated with overexpression of A53T mutant human α-synuclein in mice. Neurobiology of Disease, 2006, 21, 431-443.	4.4	113
40	Basal ganglia neuronal nitric oxide synthase mRNA expression in Parkinson's disease. Molecular Brain Research, 1998, 63, 62-71.	2.3	107
41	Selective increase in somatostatin mRNA expression in human basal ganglia in Parkinson's disease. Molecular Brain Research, 1997, 50, 59-70.	2.3	17
42	Clutamate decarboxylase-67 messenger RNA expression in normal human basal ganglia and in Parkinson's disease. Neuroscience, 1996, 75, 389-406.	2.3	22
43	Tissue pH as an indicator of mRNA preservation in human post-mortem brain. Molecular Brain Research, 1995, 28, 311-318.	2.3	304
44	Preproenkephalin and preprotachykinin messenger RNA expression in normal human basal ganglia and in Parkinson's disease. Neuroscience, 1995, 66, 361-376.	2.3	112