Vasilios Georgakilas

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/801212/vasilios-georgakilas-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

44 papers 9,736 th-index 9,736 h-index 9-index

47 g-index 6.11 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
44	Self-assembled Janus graphene nanostructures with high camptothecin loading for increased cytotoxicity to cancer cells. <i>Journal of Drug Delivery Science and Technology</i> , 2021 , 102971	4.5	O
43	A Guide for Using Transmission Electron Microscopy for Studying the Radiosensitizing Effects of Gold Nanoparticles In Vitro. <i>Nanomaterials</i> , 2021 , 11,	5.4	4
42	Condensed Clustered Iron Oxides for Ultrahigh Photothermal Conversion and Multimodal Imaging. <i>ACS Applied Materials & District Materia</i>	9.5	6
41	Transparent conductive film of polyvinyl alcohol: reduced graphene oxide composite. <i>Journal of Materials Science</i> , 2021 , 56, 17028-17039	4.3	0
40	Advancing the boundaries of the covalent functionalization of graphene oxide. <i>Surfaces and Interfaces</i> , 2021 , 26, 101320	4.1	3
39	Solid phase functionalization of MWNTs: an eco-friendly approach for carbon-based conductive inks. <i>Green Chemistry</i> , 2021 , 23, 5442-5448	10	3
38	Graphene Aerogel Growth on Functionalized Carbon Fibers. <i>Molecules</i> , 2020 , 25,	4.8	3
37	Graphene Aerogel Modified Carbon Paper as Anode for Lithium-Ion Batteries. <i>ChemistrySelect</i> , 2020 , 5, 2719-2724	1.8	3
36	Sulfur-doped graphene aerogels reinforced with carbon fibers as electrode materials. <i>Journal of Materials Science</i> , 2020 , 55, 9676-9685	4.3	2
35	UV-Cured Poly(Ethylene Glycol) Diacrylate/Carbon Nanostructure Thin Films. Preparation, Characterization, and Electrical Properties. <i>Journal of Composites Science</i> , 2020 , 4, 4	3	2
34	Highly conductive functionalized reduced graphene oxide. Surfaces and Interfaces, 2019, 16, 152-156	4.1	9
33	Fluorescent Carbon Dots Ink for Gravure Printing. Journal of Carbon Research, 2019, 5, 12	3.3	4
32	Layer-by-Layer Assembly of Clay-Carbon Nanotube Hybrid Superstructures. <i>ACS Omega</i> , 2019 , 4, 18100	D-1389107	7 10
31	Simultaneous reduction and surface functionalization of graphene oxide for highly conductive and water dispersible graphene derivatives. <i>SN Applied Sciences</i> , 2019 , 1, 1	1.8	10
30	The Role of Diamines in the Formation of Graphene Aerogels. Frontiers in Materials, 2018, 5,	4	14
29	Efficient defect healing and ultralow sheet resistance of laser-assisted reduced graphene oxide at ambient conditions. <i>Carbon</i> , 2018 , 139, 492-499	10.4	16
28	Solid phase extraction for the purification of violet, blue, green and yellow emitting carbon dots. <i>Nanoscale</i> , 2018 , 10, 11293-11296	7.7	16

(2009-2018)

27	Interfacial Asymmetric Post-Functionalization of Graphene: Amphiphilic Graphene Derivatives Self-Assembled to 3D Superstructures. <i>Chemistry - A European Journal</i> , 2018 , 24, 17356-17360	4.8	6
26	Self-assembly of one-side-functionalized graphene nanosheets in bilayered superstructures for drug delivery. <i>Journal of Materials Science</i> , 2018 , 53, 11167-11175	4.3	5
25	Successful entrapment of carbon dots within flexible free-standing transparent mesoporous organic-inorganic silica hybrid films for photonic applications. <i>Journal of Physics and Chemistry of Solids</i> , 2017 , 103, 190-196	3.9	26
24	Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. <i>ACS Nano</i> , 2017 , 11, 2982-2991	16.7	99
23	Encapsulation and protection of carbon dots within MCM-41 material. <i>Journal of Sol-Gel Science and Technology</i> , 2017 , 82, 795-800	2.3	6
22	Highly Conductive Water-Based Polymer/Graphene Nanocomposites for Printed Electronics. <i>Chemistry - A European Journal</i> , 2017 , 23, 8268-8274	4.8	15
21	Fullerolgraphene nanobuds: Novel water dispersible and highly conductive nanocarbon for electrochemical sensing. <i>Applied Materials Today</i> , 2017 , 9, 71-76	6.6	8
20	Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. <i>Chemical Reviews</i> , 2016 , 116, 5464-519	68.1	1546
19	Remarkable enhancement of the electrical conductivity of carbon nanostructured thin films after compression. <i>Nanoscale</i> , 2016 , 8, 11413-7	7.7	10
18	Graphene nanobuds: Synthesis and selective organic derivatisation. <i>Carbon</i> , 2016 , 110, 51-55	10.4	13
17	Interfacial polymerization of conductive polymers: Generation of polymeric nanostructures in a 2-D space. <i>Advances in Colloid and Interface Science</i> , 2015 , 224, 46-61	14.3	42
16	Highly dispersible disk-like graphene nanoflakes. <i>Nanoscale</i> , 2015 , 7, 15059-64	7.7	8
15	Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. <i>Chemical Reviews</i> , 2015 , 115, 4744-822	68.1	1137
14	Hydrophilic Nanotube Supported Graphene Water Dispersible Carbon Superstructure with Excellent Conductivity. <i>Advanced Functional Materials</i> , 2015 , 25, 1481-1487	15.6	56
13	Tuning the dispersibility of carbon nanostructures from organophilic to hydrophilic: towards the preparation of new multipurpose carbon-based hybrids. <i>Chemistry - A European Journal</i> , 2013 , 19, 1288	4498	15
12	Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. <i>Chemical Reviews</i> , 2012 , 112, 6156-214	68.1	3041
11	Organic functionalisation of graphenes. Chemical Communications, 2010, 46, 1766-8	5.8	235
10	Liquid-phase exfoliation of graphite towards solubilized graphenes. <i>Small</i> , 2009 , 5, 1841-5	11	460

9	Multipurpose organically modified carbon nanotubes: from functionalization to nanotube composites. <i>Journal of the American Chemical Society</i> , 2008 , 130, 8733-40	16.4	197
8	Synthesis, Characterization and Aspects of Superhydrophobic Functionalized Carbon Nanotubes. <i>Chemistry of Materials</i> , 2008 , 20, 2884-2886	9.6	100
7	Photoluminescent Carbogenic Dots. <i>Chemistry of Materials</i> , 2008 , 20, 4539-4541	9.6	525
6	Nanoscale organization of a phthalocyanine-fullerene system: remarkable stabilization of charges in photoactive 1-D nanotubules. <i>Journal of the American Chemical Society</i> , 2005 , 127, 5811-3	16.4	137
5	Soluble carbon nanotubes. Chemistry - A European Journal, 2003, 9, 4000-8	4.8	502
4	Organic functionalization and optical properties of carbon onions. <i>Journal of the American Chemical Society</i> , 2003 , 125, 14268-9	16.4	82
3	Supramolecular self-assembled fullerene nanostructures. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 5075-80	11.5	176
2	Organic functionalization of carbon nanotubes. <i>Journal of the American Chemical Society</i> , 2002 , 124, 76	0-1 6.4	1062
1	Novel versatile fullerene synthons. <i>Journal of Organic Chemistry</i> , 2001 , 66, 4915-20	4.2	122