
## Francis Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8012083/publications.pdf Version: 2024-02-01



FRANCIS LIN

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A flux-adaptable pump-free microfluidics-based self-contained platform for multiplex cancer<br>biomarker detection. Lab on A Chip, 2021, 21, 143-153.                                                                                        | 3.1 | 53        |
| 2  | Microfluidic devices for neutrophil migration studies. , 2021, , 173-200.                                                                                                                                                                    |     | 0         |
| 3  | Emerging optofluidic technologies for biodiagnostic applications. View, 2021, 2, 20200035.                                                                                                                                                   | 2.7 | 9         |
| 4  | "Microfluidics Studies of the Regulation of Myoblast Migration and Differentiation Behaviour –<br>Possible Application in Wound Healing― FASEB Journal, 2021, 35, .                                                                          | 0.2 | 0         |
| 5  | Activin A as a Novel Chemokine Induces Migration of L929 Fibroblasts by ERK Signaling in Microfluidic<br>Devices. Frontiers in Cell and Developmental Biology, 2021, 9, 660316.                                                              | 1.8 | 8         |
| 6  | Boron rich nanotube drug carrier system is suited for boron neutron capture therapy. Scientific Reports, 2021, 11, 15520.                                                                                                                    | 1.6 | 6         |
| 7  | Investigations on T cell transmigration in a human skin-on-chip (SoC) model. Lab on A Chip, 2021, 21, 1527-1539.                                                                                                                             | 3.1 | 27        |
| 8  | Generation of flow and droplets with an ultra-long-range linear concentration gradient. Lab on A<br>Chip, 2021, 21, 4390-4400.                                                                                                               | 3.1 | 21        |
| 9  | Applications of microfluidic devices in advancing NK-cell migration studies. Methods in Enzymology, 2020, 631, 357-370.                                                                                                                      | 0.4 | 8         |
| 10 | Mucus-penetrating PEGylated polysuccinimide-based nanocarrier for intravaginal delivery of siRNA battling sexually transmitted infections. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111287.                                        | 2.5 | 10        |
| 11 | TILRR Promotes Migration of Immune Cells Through Induction of Soluble Inflammatory Mediators.<br>Frontiers in Cell and Developmental Biology, 2020, 8, 563.                                                                                  | 1.8 | 6         |
| 12 | Traction and attraction: haptotaxis substrates collagen and fibronectin interact with chemotaxis by<br>HGF to regulate myoblast migration in a microfluidic device. American Journal of Physiology - Cell<br>Physiology, 2020, 319, C75-C92. | 2.1 | 6         |
| 13 | Methodology of Research and Applications of Electric Fields. Bioelectricity, 2020, 2, 320-320.                                                                                                                                               | 0.6 | 1         |
| 14 | Effect of Manitoba-Grown Red-Osier Dogwood Extracts on Recovering Caco-2 Cells from<br>H2O2-Induced Oxidative Damage. Antioxidants, 2019, 8, 250.                                                                                            | 2.2 | 20        |
| 15 | Paper-Based Microfluidic Device (DON-Chip) for Rapid and Low-Cost Deoxynivalenol Quantification in Food, Feed, and Feed Ingredients. ACS Sensors, 2019, 4, 3072-3079.                                                                        | 4.0 | 36        |
| 16 | Fully-functional semi-automated microfluidic immunoassay platform for quantitation of multiple samples. Sensors and Actuators B: Chemical, 2019, 300, 127017.                                                                                | 4.0 | 21        |
| 17 | Sputum from chronic obstructive pulmonary disease patients inhibits T cell migration in a microfluidic device. Annals of the New York Academy of Sciences, 2019, 1445, 52-61.                                                                | 1.8 | 8         |
| 18 | A new tool to attack biofilms: driving magnetic iron-oxide nanoparticles to disrupt the matrix.<br>Nanoscale, 2019, 11, 6905-6915.                                                                                                           | 2.8 | 68        |

FRANCIS LIN

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A New Microfluidic Platform for Studying Natural Killer Cell and Dendritic Cell Interactions.<br>Micromachines, 2019, 10, 851.                                                           | 1.4 | 5         |
| 20 | Emerging Development of Microfluidics-Based Approaches to Improve Studies of Muscle Cell<br>Migration. Tissue Engineering - Part B: Reviews, 2019, 25, 30-45.                            | 2.5 | 7         |
| 21 | Recent development of portable imaging platforms for cell-based assays. Biosensors and Bioelectronics, 2019, 124-125, 150-160.                                                           | 5.3 | 30        |
| 22 | Microfluidic Devices for Studying the Effect of Netrinâ€1 on Neutrophil and Breast Cancer Cell<br>Migration. Advanced Biology, 2018, 2, 1700178.                                         | 3.0 | 3         |
| 23 | Lab-on-chip technology for chronic disease diagnosis. Npj Digital Medicine, 2018, 1, 7.                                                                                                  | 5.7 | 99        |
| 24 | Distinct roles for phosphoinositide 3-kinases γ and δ in malignant B cell migration. Leukemia, 2018, 32,<br>1958-1969.                                                                   | 3.3 | 40        |
| 25 | Mkit: A cell migration assay based on microfluidic device and smartphone. Biosensors and Bioelectronics, 2018, 99, 259-267.                                                              | 5.3 | 27        |
| 26 | A radial microfluidic platform for higher throughput chemotaxis studies with individual gradient control. Lab on A Chip, 2018, 18, 3855-3864.                                            | 3.1 | 34        |
| 27 | A Passive Mixing Microfluidic Urinary Albumin Chip for Chronic Kidney Disease Assessment. ACS<br>Sensors, 2018, 3, 2191-2197.                                                            | 4.0 | 25        |
| 28 | The effects of activin A on the migration of human breast cancer cells and neutrophils and their migratory interaction. Experimental Cell Research, 2017, 357, 107-115.                  | 1.2 | 21        |
| 29 | Fibroblast growth factor 23 weakens chemotaxis of human blood neutrophils in microfluidic devices.<br>Scientific Reports, 2017, 7, 3100.                                                 | 1.6 | 21        |
| 30 | Collective cell migration has distinct directionality and speed dynamics. Cellular and Molecular Life Sciences, 2017, 74, 3841-3850.                                                     | 2.4 | 33        |
| 31 | A dual-docking microfluidic cell migration assay (D <sup>2</sup> -Chip) for testing neutrophil chemotaxis and the memory effect. Integrative Biology (United Kingdom), 2017, 9, 303-312. | 0.6 | 27        |
| 32 | Chemorepellent Semaphorin 3E Negatively Regulates Neutrophil Migration In Vitro and In Vivo. Journal of Immunology, 2017, 198, 1023-1033.                                                | 0.4 | 38        |
| 33 | A bioenergetic mechanism for amoeboid-like cell motility profiles tested in a microfluidic electrotaxis<br>assay. Integrative Biology (United Kingdom), 2017, 9, 844-856.                | 0.6 | 3         |
| 34 | An All-on-chip Method for Rapid Neutrophil Chemotaxis Analysis Directly from a Drop of Blood.<br>Journal of Visualized Experiments, 2017, , .                                            | 0.2 | 7         |
| 35 | The long non-coding RNA BC200 (BCYRN1) is critical for cancer cell survival and proliferation.<br>Molecular Cancer, 2017, 16, 109.                                                       | 7.9 | 70        |
| 36 | Cell Migration Research Based on Organ-on-Chip-Related Approaches. Micromachines, 2017, 8, 324.                                                                                          | 1.4 | 14        |

FRANCIS LIN

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Lab-on-a-Chip Platforms for Detection of Cardiovascular Disease and Cancer Biomarkers. Sensors, 2017, 17, 2934.                                                                                      | 2.1 | 60        |
| 38 | Rapid and Low-Cost CRP Measurement by Integrating a Paper-Based Microfluidic Immunoassay with<br>Smartphone (CRP-Chip). Sensors, 2017, 17, 684.                                                      | 2.1 | 43        |
| 39 | Microfluidic-Based Live-Cell Analysis of NK Cell Migration In Vitro. Methods in Molecular Biology, 2016, 1441, 75-86.                                                                                | 0.4 | 1         |
| 40 | An all-on-chip method for testing neutrophil chemotaxis induced by fMLP and COPD patient's sputum.<br>Technology, 2016, 04, 104-109.                                                                 | 1.4 | 17        |
| 41 | Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones. Lab on A Chip, 2016, 16, 943-958.                                                             | 3.1 | 168       |
| 42 | Phosphatidylinositol-3,4-Bisphosphate and Its Binding Protein Lamellipodin Regulate Chemotaxis of<br>Malignant B Lymphocytes. Journal of Immunology, 2016, 196, 586-595.                             | 0.4 | 15        |
| 43 | Adipose-Derived Stem Cells from Both Visceral and Subcutaneous Fat Deposits Significantly Improve Contractile Function of Infarcted Rat Hearts. Cell Transplantation, 2015, 24, 2337-2351.           | 1.2 | 17        |
| 44 | Neutrophil migration under spatially-varying chemoattractant gradient profiles. Biomedical<br>Microdevices, 2015, 17, 9963.                                                                          | 1.4 | 13        |
| 45 | Analysis of CCR7 mediated T cell transfectant migration using a microfluidic gradient generator.<br>Journal of Immunological Methods, 2015, 419, 9-17.                                               | 0.6 | 6         |
| 46 | Selection of chemotactic adipose-derived stem cells using a microfluidic gradient generator. RSC<br>Advances, 2015, 5, 6332-6339.                                                                    | 1.7 | 2         |
| 47 | A Microfluidic Platform for Evaluating Neutrophil Chemotaxis Induced by Sputum from COPD Patients. PLoS ONE, 2015, 10, e0126523.                                                                     | 1.1 | 28        |
| 48 | Cultivable bacterial diversity and amylase production in three typical <scp>D</scp> aqus of<br><scp>C</scp> hinese spirits. International Journal of Food Science and Technology, 2014, 49, 776-786. | 1.3 | 34        |
| 49 | Recent Developments in Electrotaxis Assays. Advances in Wound Care, 2014, 3, 149-155.                                                                                                                | 2.6 | 14        |
| 50 | Microfluidicâ€based, liveâ€cell analysis allows assessment of NKâ€cell migration in response to crosstalk<br>with dendritic cells. European Journal of Immunology, 2014, 44, 2737-2748.              | 1.6 | 23        |
| 51 | A compact microfluidic system for cell migration studies. Biomedical Microdevices, 2014, 16, 521-528.                                                                                                | 1.4 | 14        |
| 52 | Recent developments in microfluidics-based chemotaxis studies. Lab on A Chip, 2013, 13, 2484.                                                                                                        | 3.1 | 126       |
| 53 | DC Electric Fields Direct Breast Cancer Cell Migration, Induce EGFR Polarization, and Increase the Intracellular Level of Calcium Ions. Cell Biochemistry and Biophysics, 2013, 67, 1115-1125.       | 0.9 | 55        |
| 54 | Effects of Clostridium difficile Toxin A and B on Human T Lymphocyte Migration. Toxins, 2013, 5,<br>926-938.                                                                                         | 1.5 | 13        |

Francis Lin

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The Tandem PH Domain-Containing Protein 2 (TAPP2) Regulates Chemokine-Induced Cytoskeletal<br>Reorganization and Malignant B Cell Migration. PLoS ONE, 2013, 8, e57809.                                                               | 1.1 | 16        |
| 56 | An Inâ€Vitro Model of T Cell Exit from the T Cell Zone Mediated by Subâ€Regional Coâ€Existing CCL19 and CCL21 Fields in Lymph Nodes. FASEB Journal, 2013, 27, 1016.3.                                                                 | 0.2 | 0         |
| 57 | Microfluidic device for studying cell migration in single or co-existing chemical gradients and electric fields. Biomicrofluidics, 2012, 6, 024121.                                                                                   | 1.2 | 48        |
| 58 | Surface Engineering of Poly(ethylene terephthalate) for Durable Hemocompatibility via a Surface<br>Interpenetrating Network Technique. Macromolecular Chemistry and Physics, 2012, 213, 2120-2129.                                    | 1.1 | 19        |
| 59 | Purification and Characterization of Alkaline Pectin Lyase from a Newly Isolated Bacillus clausii and<br>Its Application in Elicitation of Plant Disease Resistance. Applied Biochemistry and Biotechnology, 2012,<br>167, 2241-2256. | 1.4 | 23        |
| 60 | Growth and positioning of adipose-derived stem cells in microfluidic devices. Lab on A Chip, 2012, 12, 4829.                                                                                                                          | 3.1 | 18        |
| 61 | E-cadherin plays an essential role in collective directional migration of large epithelial sheets.<br>Cellular and Molecular Life Sciences, 2012, 69, 2779-2789.                                                                      | 2.4 | 119       |
| 62 | Activated T lymphocytes migrate toward the cathode of DC electric fields in microfluidic devices. Lab on A Chip, 2011, 11, 1298.                                                                                                      | 3.1 | 62        |
| 63 | A receptor-electromigration-based model for cellular electrotactic sensing and migration.<br>Biochemical and Biophysical Research Communications, 2011, 411, 695-701.                                                                 | 1.0 | 10        |
| 64 | Microfluidics for food, agriculture and biosystems industries. Lab on A Chip, 2011, 11, 1574.                                                                                                                                         | 3.1 | 200       |
| 65 | Modeling Cell Gradient Sensing and Migration in Competing Chemoattractant Fields. PLoS ONE, 2011, 6, e18805.                                                                                                                          | 1.1 | 16        |
| 66 | Microfluidic devices for studying chemotaxis and electrotaxis. Trends in Cell Biology, 2011, 21, 489-497.                                                                                                                             | 3.6 | 115       |
| 67 | Combinatorial Guidance by CCR7 Ligands for T Lymphocytes Migration in Co-Existing Chemokine Fields.<br>PLoS ONE, 2011, 6, e18183.                                                                                                     | 1.1 | 70        |
| 68 | Chapter 15 A Microfluidicsâ€Based Method for Analyzing Leukocyte Migration to Chemoattractant<br>Gradients. Methods in Enzymology, 2009, 461, 333-347.                                                                                | 0.4 | 18        |
| 69 | Lymphocyte Electrotaxis In Vitro and In Vivo. Journal of Immunology, 2008, 181, 2465-2471.                                                                                                                                            | 0.4 | 118       |
| 70 | Modeling the Role of Homologous Receptor Desensitization in Cell Gradient Sensing. Journal of<br>Immunology, 2008, 181, 8335-8343.                                                                                                    | 0.4 | 36        |
| 71 | A Gradient-generating Microfluidic Device for Cell Biology. Journal of Visualized Experiments, 2007, ,<br>271.                                                                                                                        | 0.2 | 10        |
| 72 | Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomedical Microdevices, 2007, 9, 627-635.                                                                                | 1.4 | 175       |

Francis Lin

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A microfluidic multi-injector for gradient generation. Lab on A Chip, 2006, 6, 764.                                                                                                           | 3.1 | 91        |
| 74 | TÂcell chemotaxis in a simple microfluidic device. Lab on A Chip, 2006, 6, 1462-1469.                                                                                                         | 3.1 | 172       |
| 75 | A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis.<br>Biomedical Microdevices, 2006, 8, 109-118.                                            | 1.4 | 180       |
| 76 | Neutrophil Migration in Opposing Chemoattractant Gradients Using Microfluidic Chemotaxis Devices.<br>Annals of Biomedical Engineering, 2005, 33, 475-482.                                     | 1.3 | 95        |
| 77 | Intracellular actin-based transport: How far you go depends on how often you switch. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13204-13209. | 3.3 | 77        |
| 78 | Generation of dynamic temporal and spatial concentration gradients using microfluidic devices. Lab<br>on A Chip, 2004, 4, 164.                                                                | 3.1 | 194       |
| 79 | Effective neutrophil chemotaxis is strongly influenced by mean IL-8 concentration. Biochemical and Biophysical Research Communications, 2004, 319, 576-581.                                   | 1.0 | 130       |
| 80 | Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis.<br>Experimental Cell Research, 2004, 300, 180-189.                                                 | 1.2 | 240       |
| 81 | Microengineered tools for studying cell migration in electric fields. , 0, , 110-127.                                                                                                         |     | 0         |