Jungmook Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8011779/publications.pdf

Version: 2024-02-01

		147801	133252
59	4,559	31	59
papers	citations	h-index	g-index
59	59	59	5331
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recent advances in peptide signaling during Arabidopsis root development. Journal of Experimental Botany, 2021, 72, 2889-2902.	4.8	21
2	Signaling Peptides Regulating Abiotic Stress Responses in Plants. Frontiers in Plant Science, 2021, 12, 704490.	3.6	48
3	Chemical control of receptor kinase signaling by rapamycin-induced dimerization. Molecular Plant, 2021, 14, 1379-1390.	8.3	12
4	Peptide Signaling during Plant Reproduction. Trends in Plant Science, 2021, 26, 822-835.	8.8	33
5	Arabidopsis ATXR2 represses de novo shoot organogenesis in the transition from callus to shoot formation. Cell Reports, 2021, 37, 109980.	6.4	16
6	AP2/DREB Transcription Factor RAP2.4 Activates Cuticular Wax Biosynthesis in Arabidopsis Leaves Under Drought. Frontiers in Plant Science, 2020, 11, 895.	3.6	35
7	LBD16 and LBD18 acting downstream of ARF7 and ARF19 are involved in adventitious root formation in Arabidopsis. BMC Plant Biology, 2019, 19, 46.	3.6	84
8	LBD13 positively regulates lateral root formation in Arabidopsis. Planta, 2019, 249, 1251-1258.	3.2	19
9	<scp>LBD</scp> 18 uses a dual mode of a positive feedback loop to regulate <scp>ARF</scp> expression and transcriptional activity in Arabidopsis. Plant Journal, 2018, 95, 233-251.	5.7	20
10	Signaling Peptides and Receptors Coordinating Plant Root Development. Trends in Plant Science, 2018, 23, 337-351.	8.8	79
11	Coiled-coil motif in LBD16 and LBD18 transcription factors are critical for dimerization and biological function in arabidopsis. Plant Signaling and Behavior, 2018, 13, e1411450.	2.4	6
12	Role of <i>LBD14</i> during ABA-mediated control of root system architecture in Arabidopsis. Plant Signaling and Behavior, 2018, 13, 1-3.	2.4	8
13	Dimerization in LBD16 and LBD18 Transcription Factors Is Critical for Lateral Root Formation. Plant Physiology, 2017, 174, 301-311.	4.8	33
14	LBD14/ASL17 Positively Regulates Lateral Root Formation and is Involved in ABA Response for Root Architecture in Arabidopsis. Plant and Cell Physiology, 2017, 58, 2190-2201.	3.1	28
15	PIF4 Promotes Expression of LNG1 and LNG2 to Induce Thermomorphogenic Growth in Arabidopsis. Frontiers in Plant Science, 2017, 8, 1320.	3.6	26
16	High Ambient Temperature Represses Anthocyanin Biosynthesis through Degradation of HY5. Frontiers in Plant Science, 2017, 8, 1787.	3.6	90
17	Expression and Protein Interaction Analyses Reveal Combinatorial Interactions of LBD Transcription Factors During Arabidopsis Pollen Development. Plant and Cell Physiology, 2016, 57, 2291-2299.	3.1	18
18	<i>CYTOKININ RESPONSE FACTOR2</i> (<i>CRF2</i>) and <i>CRF3</i> Regulate Lateral Root Development in Response to Cold Stress in Arabidopsis. Plant Cell, 2016, 28, 1828-1843.	6.6	107

#	Article	IF	CITATIONS
19	CYTOKININ RESPONSE FACTORs Gating Environmental Signals and Hormones. Trends in Plant Science, 2016, 21, 993-996.	8.8	28
20	<i>Lateral Organ Boundaries Domain $16 < i$ and <i> $18 < i$ Act Downstream of the AUXIN1 and LIKE-AUXIN3 Auxin Influx Carriers to Control Lateral Root Development in Arabidopsis. Plant Physiology, 2015, 168, 1792-1806.</i></i>	4.8	81
21	<i><scp>LATERAL ORGAN BOUNDARIES DOMAIN</scp></i> (<i><scp>LBD</scp></i>) <i>10</i> interacts with <i><scp>SIDECAR POLLEN</scp></i> <i><scp>LBD</scp>27</i> to control pollen development in <scp>A</scp> rabidopsis. Plant Journal, 2015, 81, 794-809.	5.7	57
22	Combinatorial interactions between <i>LBD10</i> and <i>LBD27</i> are essential for male gametophyte development in Arabidopsis. Plant Signaling and Behavior, 2015, 10, e1044193.	2.4	9
23	GIP1 may act as a coactivator that enhances transcriptional activity of LBD18 in Arabidopsis. Journal of Plant Physiology, 2014, 171, 14-18.	3.5	21
24	AtC3H14, a plantâ€specific tandem CCCH zincâ€finger protein, binds to its target mRNAs in a sequenceâ€specific manner and affects cell elongation in ⟨i⟩Arabidopsis thaliana⟨/i⟩. Plant Journal, 2014, 80, 772-784.	5.7	63
25	Cold stress signaling networks in Arabidopsis. Journal of Plant Biology, 2013, 56, 69-76.	2.1	78
26	The Conserved Proline Residue in the LOB Domain of LBD18 Is Critical for DNA-Binding and Biological Function. Molecular Plant, 2013, 6, 1722-1725.	8.3	24
27	LBD18 acts as a transcriptional activator that directly binds to the <i>EXPANSIN14</i> promoter in promoting lateral root emergence of Arabidopsis. Plant Journal, 2013, 73, 212-224.	5.7	133
28	The AP2/EREBP Gene PUCHI Co-Acts with LBD16/ASL18 and LBD18/ASL20 Downstream of ARF7 and ARF19 to Regulate Lateral Root Development in Arabidopsis. Plant and Cell Physiology, 2013, 54, 1326-1334.	3.1	48
29	«scp»MYB«/scp»46 directly regulates the gene expression of secondary wallâ€associated cellulose synthases in «scp»A«/scp»rabidopsis. Plant Journal, 2013, 73, 26-36.	5.7	134
30	Transcription factor MYB46 is an obligate component of the transcriptional regulatory complex for functional expression of secondary wall-associated cellulose synthases in Arabidopsis thaliana. Journal of Plant Physiology, 2013, 170, 1374-1378.	3.5	49
31	EXPANSINA17 Up-Regulated by LBD18/ASL20 Promotes Lateral Root Formation During the Auxin Response. Plant and Cell Physiology, 2013, 54, 1600-1611.	3.1	102
32	Cytokinin signaling regulates pavement cell morphogenesis in Arabidopsis. Cell Research, 2013, 23, 290-299.	12.0	31
33	Direct activation of <i> <i> EXPANSIN14 < /i > by LBD18 in the gene regulatory network of lateral root formation in Arabidopsis. Plant Signaling and Behavior, 2013, 8, e22979.</i></i>	2.4	25
34	Cold Signaling via the Two-Component Signaling System. Molecular Plant, 2013, 6, 15-17.	8.3	9
35	Inducible Expression of Arabidopsis Response Regulator 22 (ARR22), a Type-C ARR, in Transgenic Arabidopsis Enhances Drought and Freezing Tolerance. PLoS ONE, 2013, 8, e79248.	2.5	44
36	Arabidopsis Response Regulator1 and Arabidopsis Histidine Phosphotransfer Protein2 (AHP2), AHP3, and AHP5 Function in Cold Signaling Â. Plant Physiology, 2012, 161, 408-424.	4.8	115

#	Article	IF	CITATIONS
37	Cytokinin receptor-dependent and receptor-independent pathways in the dehydration response of Arabidopsis thaliana. Journal of Plant Physiology, 2012, 169, 1382-1391.	3.5	95
38	Identification of nuclear localization signal in ASYMMETRIC LEAVES2-LIKE18/LATERAL ORGAN BOUNDARIES DOMAIN16 (ASL18/LBD16) from Arabidopsis. Journal of Plant Physiology, 2012, 169, 1221-1226.	3.5	12
39	Identification of marneral synthase, which is critical for growth and development in Arabidopsis. Plant Journal, 2012, 72, 791-804.	5.7	33
40	FVE, an Arabidopsis Homologue of the Retinoblastoma-Associated Protein That Regulates Flowering Time and Cold Response, Binds to Chromatin as a Large Multiprotein Complex. Molecules and Cells, 2011, 32, 227-234.	2.6	39
41	Ectopic Expression of LBD18/ASL20 Results in Arrest of Plant Growth and Development with Repression of AINTEGUMENTA and PLETHORA Genes. Journal of Plant Biology, 2010, 53, 214-221.	2.1	9
42	Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis. Plant Journal, 2010, 61, 661-671.	5.7	253
43	A Subset of Cytokinin Two-component Signaling System Plays a Role in Cold Temperature Stress Response in Arabidopsis. Journal of Biological Chemistry, 2010, 285, 23371-23386.	3.4	315
44	Crosstalk between Cold Response and Flowering in <i>Arabidopsis</i> Is Mediated through the Flowering-Time Gene <i>SOC1</i> and Its Upstream Negative Regulator <i>FLC</i> Plant Cell, 2009, 21, 3185-3197.	6.6	229
45	<i>LBD18/ASL20</i> Regulates Lateral Root Formation in Combination with <i>LBD16/ASL18</i> Downstream of <i>ARF7</i> and <i>ARF19</i> i>in Arabidopsis. Plant Physiology, 2009, 151, 1377-1389.	4.8	246
46	Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression. Journal of Experimental Botany, 2009, 60, 3935-3957.	4.8	67
47	Overexpression of IAA1 with domain II mutation impairs cell elongation and cell division in inflorescences and leaves of Arabidopsis. Journal of Plant Physiology, 2009, 166, 548-553.	3 . 5	24
48	Phosphorylation of Arabidopsis response regulator 7 (ARR7) at the putative phospho-accepting site is required for ARR7 to act as a negative regulator of cytokinin signaling. Planta, 2008, 227, 577-587.	3.2	51
49	Phosphorylation of A-type ARR to function as negative regulator of cytokinin signal transduction. Plant Signaling and Behavior, 2008, 3, 348-350.	2.4	23
50	GH3-mediated Auxin Homeostasis Links Growth Regulation with Stress Adaptation Response in Arabidopsis. Journal of Biological Chemistry, 2007, 282, 10036-10046.	3.4	423
51	Perception, transduction, and networks in cold signaling. Journal of Plant Biology, 2007, 50, 139-147.	2.1	18
52	Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7(ARR7) overexpression in cytokinin response. Molecular Genetics and Genomics, 2007, 277, 115-137.	2.1	103
53	Heterologous Expression and Molecular and Cellular Characterization of CaPUB1 Encoding a Hot Pepper U-Box E3 Ubiquitin Ligase Homolog. Plant Physiology, 2006, 142, 1664-1682.	4.8	106
54	Functional characterization of NtCEF1, an AP2/EREBP-type transcriptional activator highly expressed in tobacco callus. Planta, 2005, 222, 211-224.	3.2	27

#	Article	IF	CITATION
55	A New Arabidopsis Gene,FLK, Encodes an RNA Binding Protein with K Homology Motifs and Regulates Flowering Time viaFLOWERING LOCUS CÂ[W]. Plant Cell, 2004, 16, 731-740.	6.6	211
56	A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nature Genetics, 2004, 36, 167-171.	21.4	250
57	A Mechanism for Light-Induced Translation of the rbcL mRNA Encoding the Large Subunit of Ribulose-1,5-bisphosphate Carboxylase in Barley Chloroplasts. Plant and Cell Physiology, 2003, 44, 491-499.	3.1	23
58	Light signalling mediated by phytochrome plays an important role in coldâ€induced gene expression through the Câ€repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant Journal, 2002, 29, 693-704.	5.7	185
59	Mutation in domain II of IAA1 confers diverse auxin-related phenotypes and represses auxin-activated expression of Aux/IAA genes in steroid regulator-inducible system. Plant Journal, 2002, 32, 669-683.	5.7	83