
Maria C Arno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8011255/publications.pdf Version: 2024-02-01

MADIA C ADNO

#	Article	IF	CITATIONS
1	Ultraâ€Tough Elastomers from Stereochemistryâ€Directed Hydrogen Bonding in Isosorbideâ€Based Polymers. Angewandte Chemie - International Edition, 2022, 61, .	13.8	34
2	Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nature Reviews Chemistry, 2021, 5, 21-45.	30.2	154
3	Selective Chemical Upcycling of Mixed Plastics Guided by a Thermally Stable Organocatalyst. Angewandte Chemie, 2021, 133, 6784-6791.	2.0	20
4	Selective Chemical Upcycling of Mixed Plastics Guided by a Thermally Stable Organocatalyst. Angewandte Chemie - International Edition, 2021, 60, 6710-6717.	13.8	118
5	Organocatalytic Synthesis of Alkyneâ€Functional Aliphatic Polycarbonates via Ringâ€Opening Polymerization of an Eightâ€Memberedâ€ <i>N</i> â€Cyclic Carbonate. Macromolecular Rapid Communications, 2021, 42, e2000378.	3.9	8
6	Concomitant control of mechanical properties and degradation in resorbable elastomer-like materials using stereochemistry and stoichiometry for soft tissue engineering. Nature Communications, 2021, 12, 446.	12.8	34
7	Thermally-induced hyperbranching of bromine-containing polyesters by insertion of <i>in situ</i> generated chain-end carbenes. Chemical Communications, 2021, 57, 4275-4278.	4.1	4
8	Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials. Chemical Reviews, 2021, 121, 10865-10907.	47.7	150
9	4D polycarbonates via stereolithography as scaffolds for soft tissue repair. Nature Communications, 2021, 12, 3771.	12.8	59
10	Cyanine-5-Driven Behaviours of Hyperbranched Polymers Designed for Therapeutic Delivery Are Cell-Type Specific and Correlated with Polar Lipid Distribution in Membranes. Nanomaterials, 2021, 11, 1745.	4.1	1
11	Crystallization-Induced Gelling as a Method to 4D Print Low-Water-Content Non-isocyanate Polyurethane Hydrogels. Chemistry of Materials, 2021, 33, 7194-7202.	6.7	11
12	Robust alginate/hyaluronic acid thiol–yne click-hydrogel scaffolds with superior mechanical performance and stability for load-bearing soft tissue engineering. Biomaterials Science, 2020, 8, 405-412.	5.4	48
13	Engineering the Mammalian Cell Surface with Synthetic Polymers: Strategies and Applications. Macromolecular Rapid Communications, 2020, 41, e2000302.	3.9	17
14	Manipulating the fluorescence lifetime at the sub-cellular scale via photo-switchable barcoding. Nature Communications, 2020, 11, 2460.	12.8	49
15	Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties. Nature Communications, 2020, 11, 1420.	12.8	167
16	Synthesis of Functionalized Cyclic Carbonates through Commodity Polymer Upcycling. ACS Macro Letters, 2020, 9, 443-447.	4.8	69
17	Elastomeric polyamide biomaterials with stereochemically tuneable mechanical properties and shape memory. Nature Communications, 2020, 11, 3250.	12.8	56
18	3D Printing for the Clinic: Examining Contemporary Polymeric Biomaterials and Their Clinical Utility. Biomacromolecules, 2020, 21, 1037-1059.	5.4	61

Maria C Arno

#	Article	IF	CITATIONS
19	Poly(Pentafluorophenyl Methacrylate)â€Based Nanoâ€Objects Developed by Photoâ€PISA as Scaffolds for Postâ€Polymerization Functionalization. Macromolecular Rapid Communications, 2019, 40, e1800460.	3.9	50
20	Catalytically Active <i>N</i> â€Heterocyclic Carbene Release from Singleâ€Chain Nanoparticles Following a Thermolysisâ€Driven Unfolding Strategy. Macromolecular Rapid Communications, 2019, 40, e1900071.	3.9	10
21	Anisotropic polymer nanoparticles with controlled dimensions from the morphological transformation of isotropic seeds. Nature Communications, 2019, 10, 5406.	12.8	35
22	Controlling the Size of Two-Dimensional Polymer Platelets for Water-in-Water Emulsifiers. ACS Central Science, 2018, 4, 63-70.	11.3	94
23	Nonswelling Thiol–Yne Cross-Linked Hydrogel Materials as Cytocompatible Soft Tissue Scaffolds. Biomacromolecules, 2018, 19, 1378-1388.	5.4	67
24	Confinement of Therapeutic Enzymes in Selectively Permeable Polymer Vesicles by Polymerization-Induced Self-Assembly (PISA) Reduces Antibody Binding and Proteolytic Susceptibility. ACS Central Science, 2018, 4, 718-723.	11.3	181
25	Exploiting topology-directed nanoparticle disassembly for triggered drug delivery. Biomaterials, 2018, 180, 184-192.	11.4	15
26	pH-Responsive, Functionalizable Spyrocyclic Polycarbonate: A Versatile Platform for Biocompatible Nanoparticles. Biomacromolecules, 2018, 19, 3427-3434.	5.4	13
27	Poly(oligo(ethylene glycol) vinyl acetate)s: A Versatile Class of Thermoresponsive and Biocompatible Polymers. Angewandte Chemie, 2017, 129, 9306-9310.	2.0	12
28	Poly(oligo(ethylene glycol) vinyl acetate)s: A Versatile Class of Thermoresponsive and Biocompatible Polymers. Angewandte Chemie - International Edition, 2017, 56, 9178-9182.	13.8	51
29	Precision Epitaxy for Aqueous 1D and 2D Poly(ε-caprolactone) Assemblies. Journal of the American Chemical Society, 2017, 139, 16980-16985.	13.7	159
30	Permeable Protein-Loaded Polymersome Cascade Nanoreactors by Polymerization-Induced Self-Assembly. ACS Macro Letters, 2017, 6, 1263-1267.	4.8	193
31	Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chemical Society Reviews, 2017, 46, 6255-6275.	38.1	268
32	Copper(II) binding properties of hepcidin. Journal of Biological Inorganic Chemistry, 2016, 21, 329-338.	2.6	32
33	Functional Characterization of Fluorescent Hepcidin. Bioconjugate Chemistry, 2013, 24, 1527-1532.	3.6	6