
Dan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8010981/publications.pdf Version: 2024-02-01

DAN WANC

#	Article	IF	CITATIONS
1	Degradation Mechanisms in Blue Organic Light-Emitting Diodes. CCS Chemistry, 2020, 2, 1278-1296.	7.8	60
2	Difluoroboron-Enabled Thermally Activated Delayed Fluorescence. ACS Applied Materials & Interfaces, 2019, 11, 32209-32217.	8.0	46
3	Exciton―and Polaronâ€Induced Reversible Dipole Reorientation in Amorphous Organic Semiconductor Films. Advanced Optical Materials, 2019, 7, 1801644.	7.3	44
4	Prediction of Intramolecular Charge-Transfer Excitation for Thermally Activated Delayed Fluorescence Molecules from a Descriptor-Tuned Density Functional. Journal of Physical Chemistry C, 2018, 122, 7816-7823.	3.1	36
5	Computational prediction for oxidation and reduction potentials of organic molecules used in organic light-emitting diodes. Organic Electronics, 2019, 64, 216-222.	2.6	31
6	High Fluorescence Rate of Thermally Activated Delayed Fluorescence Emitters for Efficient and Stable Blue OLEDs. ACS Applied Materials & Interfaces, 2020, 12, 31706-31715.	8.0	27
7	Efficient and Stable Organic Light-Emitting Diodes Employing Indolo[2,3- <i>b</i>]indole-Based Thermally Activated Delayed Fluorescence Emitters. ACS Applied Materials & Interfaces, 2020, 12, 6127-6136.	8.0	23
8	Improving the Stability of Green Thermally Activated Delayed Fluorescence OLEDs by Reducing the Excited-State Dipole Moment. Journal of Physical Chemistry C, 2019, 123, 29875-29883.	3.1	22
9	Efficient deep-blue organic light-emitting diodes employing difluoroboron-enabled thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2020, 8, 17464-17473.	5.5	19
10	Theoretical design and investigation of 1,8-naphthalimide-based two-photon fluorescent probes for detecting cytochrome P450 1A with separated fluorescence signal. Physical Chemistry Chemical Physics, 2018, 20, 13290-13305.	2.8	17
11	Pyrazine-Based Blue Thermally Activated Delayed Fluorescence Materials: Combine Small Singlet–Triplet Splitting With Large Fluorescence Rate. Frontiers in Chemistry, 2019, 7, 312.	3.6	17
12	Ultrapure blue organic light-emitting diodes exhibiting 13 nm full width at half-maximum. Journal of Materials Chemistry C, 2022, 10, 7799-7802.	5.5	17
13	Expanding the hole delocalization range in excited molecules for stable organic light-emitting diodes employing thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2020, 8, 10021-10030.	5.5	14
14	Efficient Intramolecular Chargeâ€Transfer Fluorophores Based on Substituted Triphenylphosphine Donors. Angewandte Chemie - International Edition, 2021, 60, 15049-15053.	13.8	14
15	A theoretical investigation of the two-photon absorption and fluorescent properties of coumarin-based derivatives for Pd ²⁺ detection. RSC Advances, 2017, 7, 49505-49517.	3.6	13
16	Weakly Conjugated Phosphine Oxide Hosts for Efficient Blue Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 30591-30599.	8.0	11
17	Zero–Zero Energy-Dominated Degradation in Blue Organic Light-Emitting Diodes Employing Thermally Activated Delayed Fluorescence. ACS Applied Materials & Interfaces, 2022, 14, 22332-22340.	8.0	7
18	Efficient and stable deep blue thermally activated delayed fluorescent molecules based on a bipyridine acceptor core. Journal of Materials Chemistry C, 2021, 9, 3088-3095.	5.5	6

#	Article	IF	CITATIONS
19	Efficient Intramolecular Chargeâ€Transfer Fluorophores Based on Substituted Triphenylphosphine Donors. Angewandte Chemie, 2021, 133, 15176-15180.	2.0	4
20	Selection of side groups on simple <scp>nonâ€fullerene</scp> acceptors for the application in organic solar cells: From flexible to rigid. Journal of Polymer Science, 2022, 60, 2343-2351.	3.8	1