Shanmuganathan Gunalan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8010900/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Web crippling behaviour of slotted perforated cold-formed steel channels: IOF load case. Journal of Constructional Steel Research, 2022, 188, 106974.	1.7	9
2	Experimental investigation of roll-formed aluminium lipped channel beams subjected to combined bending and web crippling. Thin-Walled Structures, 2022, 171, 108804.	2.7	3
3	Design of roll-formed aluminium lipped channel sections with web opening subjected to web crippling under end-two-flange load case. Journal of Building Engineering, 2022, 48, 103887.	1.6	3
4	Finite element modelling of the progressive collapse of post-and-beam mass timber building substructures under edge and corner column removal scenarios. Journal of Building Engineering, 2022, 49, 104012.	1.6	1
5	Unified approach for the web crippling design of cold-formed channels: Carbon steel, stainless steel and aluminium. Journal of Building Engineering, 2022, 51, 104134.	1.6	4
6	Structural behaviour and design of roll-formed Aluminium Lipped Channel beams subjected to combined bending and shear. Thin-Walled Structures, 2022, 174, 109015.	2.7	4
7	Web crippling design of channel beams: Carbon steel, stainless steel and aluminium. Journal of Constructional Steel Research, 2022, 196, 107427.	1.7	4
8	Experimental study on the quasi-static progressive collapse response of post-and-beam mass timber buildings under an edge column removal scenario. Engineering Structures, 2021, 228, 111425.	2.6	19
9	Web crippling of cold-formed carbon steel, stainless steel, and aluminium channels: Investigation and design. Journal of Constructional Steel Research, 2021, 179, 106538.	1.7	15
10	Experimental investigation of an innovative composite mullion made of aluminium and timber. Journal of Building Engineering, 2021, 38, 101907.	1.6	4
11	Shear behaviour of cold-formed stainless-steel beams with web openings: Numerical studies. Structures, 2021, 31, 127-144.	1.7	10
12	Development of affordable steel-framed modular buildings for emergency situations (Covid-19). Structures, 2021, 31, 862-875.	1.7	40
13	Time dependent moisture driven backout of nailplates: experimental investigations and numerical predictions. European Journal of Wood and Wood Products, 2021, 79, 1589.	1.3	1
14	Effects of connections on the behaviour of cold-formed unlipped channel section bearers. Thin-Walled Structures, 2021, 164, 107825.	2.7	0
15	Shear strength reduction of aluminium lipped channel beams due to web openings. Thin-Walled Structures, 2021, 164, 107697.	2.7	6
16	Bearing behaviour of aluminium sub-heads with removable beads in façade systems. Structures, 2021, 32, 1934-1954.	1.7	2
17	Web crippling investigations of aluminium lipped channel sections under one-flange loading conditions. Thin-Walled Structures, 2021, 166, 108025.	2.7	15
18	Experimental study on the quasi-static progressive collapse response of post-and-beam mass timber buildings under corner column removal scenarios. Engineering Structures, 2021, 242, 112497.	2.6	12

Shanmuganathan Gunalan

#	Article	IF	CITATIONS
19	Web crippling capacities of fastened aluminium lipped channel sections subjected to one-flange loading conditions. Structures, 2021, 33, 1754-1763.	1.7	13
20	Numerical study on the bearing behaviour and design of aluminium sub-heads with removable beads in façade systems. Journal of Building Engineering, 2021, 43, 103149.	1.6	0
21	Numerical study on bearing behaviour and design of aluminium sub-heads in façade systems. Thin-Walled Structures, 2021, 168, 108140.	2.7	2
22	Web crippling of slotted perforated Cold-Formed Steel channels under EOF load case: Simulation and design. Journal of Building Engineering, 2021, 44, 103306.	1.6	4
23	Numerical investigation of web crippling in fastened aluminium lipped channel sections under two-flange loading conditions. Structures, 2020, 23, 351-365.	1.7	21
24	Numerical modelling and shear design rules of stainless steel lipped channel sections. Journal of Constructional Steel Research, 2020, 168, 105873.	1.7	9
25	Optimised cold-formed steel beams in modular building applications. Journal of Building Engineering, 2020, 32, 101607.	1.6	22
26	Shear design rules for roll-formed aluminium lipped channel beams. Structures, 2020, 27, 1139-1164.	1.7	7
27	Experimental investigation on the bearing behaviour of aluminium sub-heads in façade systems. Thin-Walled Structures, 2020, 156, 106867.	2.7	1
28	Local buckling strength and design of cold-formed steel beams with slotted perforations. Thin-Walled Structures, 2020, 156, 106951.	2.7	20
29	Optimal design of cold-formed steel lipped channel beams: Combined bending, shear, and web crippling. Structures, 2020, 28, 825-836.	1.7	19
30	New distortional buckling design rules for slotted perforated cold-formed steel beams. Journal of Constructional Steel Research, 2020, 168, 106006.	1.7	15
31	Experimental study of roll-formed aluminium lipped channel beams in shear. Thin-Walled Structures, 2020, 153, 106687.	2.7	14
32	Scaling effect on the moment and shear responses of three types of beam-to-column connectors used in mass timber buildings. Engineering Structures, 2020, 208, 110329.	2.6	12
33	Fastened Aluminum-Lipped Channel Sections Subjected to Web Crippling under Two-Flange Loading Conditions: Experimental Study. Journal of Structural Engineering, 2020, 146, .	1.7	19
34	Structural behaviour of optimized coldâ€formed steel beams. Steel Construction, 2020, 13, 294-304.	0.4	25
35	Capacity of innovative nailplated joints subjected to accelerated moisture cycling. European Journal of Wood and Wood Products, 2020, 78, 237-256.	1.3	2
36	Experimental collapse response of post-and-beam mass timber frames under a quasi-static column removal scenario. Engineering Structures, 2020, 213, 110562.	2.6	20

#	Article	IF	CITATIONS
37	Web crippling behaviour and design of aluminium lipped channel sections under two flange loading conditions. Thin-Walled Structures, 2019, 144, 106265.	2.7	24
38	Combined bending and shear behaviour of slotted perforated steel channels: Numerical studies. Journal of Constructional Steel Research, 2019, 161, 369-384.	1.7	20
39	Optimum Design of Coldâ€ f ormed Steel Beams: Particle Swarm Optimisation and Numerical Analysis. Ce/Papers, 2019, 3, 205-210.	0.1	10
40	Finite Element Analyses of Coldâ€formed Stainless Steel Beam with Web Openings in Shear. Ce/Papers, 2019, 3, 907-912.	0.1	5
41	Finite Element Analyses of Coldâ€formed Stainless Steel Beams Subject to Shear. Ce/Papers, 2019, 3, 931-936.	0.1	5
42	Web Crippling Behaviour of Coldâ€formed Stainless Steel Beams with Non ircular Web Opening. Ce/Papers, 2019, 3, 937-942.	0.1	5
43	Experimental study of aluminium lipped channel sections subjected to web crippling under two flange load cases. Thin-Walled Structures, 2019, 141, 460-476.	2.7	40
44	Numerical modelling of web crippling failures in cold-formed steel unlipped channel sections. Journal of Constructional Steel Research, 2019, 158, 486-501.	1.7	36
45	Solutions to reduce moisture driven backout and improve withdrawal strength of nailplates: experimental investigations. European Journal of Wood and Wood Products, 2019, 77, 257-269.	1.3	1
46	Web crippling behaviour and design of cold-formed steel sections. Thin-Walled Structures, 2019, 140, 387-403.	2.7	33
47	Bearing capacity of coldâ€formed unlipped channels with restrained flanges under EOF and IOF load cases. Steel Construction, 2015, 8, 146-154.	0.4	27
48	Web crippling tests of cold-formed steel channels under two flange load cases. Journal of Constructional Steel Research, 2015, 110, 1-15.	1.7	55
49	Local buckling studies of cold-formed steel compression members at elevated temperatures. Journal of Constructional Steel Research, 2015, 108, 31-45.	1.7	39
50	Review of current fire design rules for cold-formed steel wall systems. Journal of Fire Sciences, 2014, 32, 3-34.	0.9	9
51	Fire performance of cold-formed steel wall panels and prediction of their fire resistance rating. Fire Safety Journal, 2014, 64, 61-80.	1.4	42
52	Flexural–torsional buckling behaviour and design of cold-formed steel compression members at elevated temperatures. Engineering Structures, 2014, 79, 149-168.	2.6	22
53	Experimental investigation of post-fire mechanical properties of cold-formed steels. Thin-Walled Structures, 2014, 84, 241-254.	2.7	95
54	Experimental and numerical studies of fire exposed lipped channel columns subject to distortional buckling. Fire Safety Journal, 2014, 70, 34-45.	1.4	6

#	Article	IF	CITATIONS
55	Improved design rules for fixed ended cold-formed steel columns subject to flexural–torsional buckling. Thin-Walled Structures, 2013, 73, 1-17.	2.7	39
56	Development of improved fire design rules for cold-formed steel wall systems. Journal of Constructional Steel Research, 2013, 88, 339-362.	1.7	28
57	Experimental study of load bearing cold-formed steel wall systems under fire conditions. Thin-Walled Structures, 2013, 65, 72-92.	2.7	115
58	Finite element modelling of load bearing cold-formed steel wall systems under fire conditions. Engineering Structures, 2013, 56, 1007-1027.	2.6	79
59	Numerical modelling of load bearing steel stud walls under fire conditions. , 2010, , 501-506.		0