Yinxiang Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8010628/publications.pdf

Version: 2024-02-01

		71004	182931
55	8,644 citations	43	54
papers	citations	h-index	g-index
56	56	56	9153
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Co ₃ O ₄ Nanowires Capable of Discharging Low Voltage Electricity Showing Potent Antibacterial Activity for Treatment of Bacterial Skin Infection. Advanced Healthcare Materials, 2022, 11, e2102044.	3.9	10
2	Synthesis of Nitrogenâ€Doped KMn ₈ O ₁₆ with Oxygen Vacancy for Stable Zincâ€lon Batteries. Advanced Science, 2022, 9, e2106067.	5.6	70
3	Confining Sn nanoparticles in interconnected N-doped hollow carbon spheres as hierarchical zincophilic fibers for dendrite-free Zn metal anodes. Science Advances, 2022, 8, eabm5766.	4.7	150
4	Nitrogenâ€Doped Carbon Fibers Embedded with Zincophilic Cu Nanoboxes for Stable Znâ€Metal Anodes. Advanced Materials, 2022, 34, e2200342.	11.1	149
5	Formation of Superâ€Assembled TiO _{<i>x</i>} /Zn/Nâ€Doped Carbon Inverse Opal Towards Dendriteâ€Free Zn Anodes. Angewandte Chemie - International Edition, 2022, 61, e202115649.	7.2	76
6	Formation of Superâ€Assembled TiO _{<i>x</i>} /Zn/Nâ€Doped Carbon Inverse Opal Towards Dendriteâ€Free Zn Anodes. Angewandte Chemie, 2022, 134, .	1.6	4
7	Nitrogenâ€Doped Amorphous Zn–Carbon Multichannel Fibers for Stable Lithium Metal Anodes. Angewandte Chemie - International Edition, 2021, 60, 8515-8520.	7.2	115
8	Nitrogenâ€Doped Amorphous Zn–Carbon Multichannel Fibers for Stable Lithium Metal Anodes. Angewandte Chemie, 2021, 133, 8596-8601.	1.6	17
9	Construction of Co–Mn Prussian Blue Analog Hollow Spheres for Efficient Aqueous Znâ€ion Batteries. Angewandte Chemie, 2021, 133, 22363-22368.	1.6	12
10	Construction of Co–Mn Prussian Blue Analog Hollow Spheres for Efficient Aqueous Znâ€ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 22189-22194.	7.2	265
11	Rationally Designed Mn ₂ O ₃ –ZnMn ₂ O ₄ Hollow Heterostructures from Metal–Organic Frameworks for Stable Znâ€lon Storage. Angewandte Chemie - International Edition, 2021, 60, 25793-25798.	7.2	82
12	Rationally Designed Mn ₂ O ₃ –ZnMn ₂ O ₄ Hollow Heterostructures from Metal–Organic Frameworks for Stable Zn″on Storage. Angewandte Chemie, 2021, 133, 25997-26002.	1.6	13
13	Manipulating nickel oxides in naturally derived cellulose nanofiber networks as robust cathodes for high-performance Ni–Zn batteries. Journal of Materials Chemistry A, 2020, 8, 565-572.	5.2	53
14	Iron-based nanoparticles encapsulated in super-large 3D carbon nanotube networks as a bifunctional catalyst for ultrastable rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2020, 8, 25913-25918.	5.2	7
15	Carbon cloth as an advanced electrode material for supercapacitors: progress and challenges. Journal of Materials Chemistry A, 2020, 8, 17938-17950.	5.2	81
16	Oxygen Defects in Promoting the Electrochemical Performance of Metal Oxides for Supercapacitors: Recent Advances and Challenges. Small Methods, 2020, 4, 1900823.	4.6	129
17	Interfacial Engineering Coupled Valence Tuning of MoO ₃ Cathode for Highâ€Capacity and Highâ€Rate Fiberâ€Shaped Zincâ€Ion Batteries. Small, 2020, 16, e1907458.	5.2	76
18	Dendriteâ€Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Znâ€Ion Batteries. Advanced Materials, 2019, 31, e1903675.	11.1	780

#	Article	IF	CITATIONS
19	Defect Promoted Capacity and Durability of Nâ€MnO _{2–} <i>_x</i> Branch Arrays via Lowâ€Temperature NH ₃ Treatment for Advanced Aqueous Zinc Ion Batteries. Small, 2019, 15, e1905452.	5.2	171
20	3D CNTs Networks Enable MnO ₂ Cathodes with High Capacity and Superior Rate Capability for Flexible Rechargeable Zn–MnO ₂ Batteries. Small Methods, 2019, 3, 1900525.	4.6	99
21	An ultrathin defect-rich Co ₃ O ₄ nanosheet cathode for high-energy and durable aqueous zinc ion batteries. Journal of Materials Chemistry A, 2019, 7, 21678-21683.	5.2	106
22	Flexible Zn″on Batteries: Recent Progresses and Challenges. Small, 2019, 15, e1804760.	5.2	412
23	Facile Synthesis of Porousâ€Carbon Nanoarchitectures as Advanced and Durable Electrodes for Supercapacitors. Particle and Particle Systems Characterization, 2019, 36, 1900115.	1.2	14
24	Electrochemically Activated Nickel–Carbon Composite as Ultrastable Cathodes for Rechargeable Nickel–Zinc Batteries. ACS Applied Materials & 11, 14854-14861.	4.0	47
25	Engineering high reversibility and fast kinetics of Bi nanoflakes by surface modulation for ultrastable nickel–bismuth batteries. Chemical Science, 2019, 10, 3602-3607.	3.7	49
26	Threeâ€Dimensional Nitrogenâ€Doped Graphene Frameworks from Electrochemical Exfoliation of Graphite as Efficient Supercapacitor Electrodes. ChemNanoMat, 2019, 5, 152-157.	1.5	18
27	Niâ€based Nanostructures as Highâ€performance Cathodes for Rechargeable Niâ^'Zn Battery. ChemNanoMat, 2018, 4, 525-536.	1.5	65
28	In Situ Activation of 3D Porous Bi/Carbon Architectures: Toward Highâ€Energy and Stable Nickel–Bismuth Batteries. Advanced Materials, 2018, 30, e1707290.	11.1	139
29	A highly crystalline bismuth superstructure for ultrastable and high-performance flexible aqueous nickel–bismuth batteries. Journal of Materials Chemistry A, 2018, 6, 8895-8900.	5. 2	33
30	Recent Smart Methods for Achieving Highâ€Energy Asymmetric Supercapacitors. Small Methods, 2018, 2, 1700230.	4.6	147
31	Oxygen Defect Modulated Titanium Niobium Oxide on Graphene Arrays: An Openâ€Door for Highâ€Performance 1.4 V Symmetric Supercapacitor in Acidic Aqueous Electrolyte. Advanced Functional Materials, 2018, 28, 1805618.	7.8	110
32	Phase Modulation of (1Tâ€2H)â€MoSe2/TiC Shell/Core Arrays via Nitrogen Doping for Highly Efficient Hydrogen Evolution Reaction. Advanced Materials, 2018, 30, e1802223.	11.1	244
33	Oxygenâ€Vacancy and Surface Modulation of Ultrathin Nickel Cobaltite Nanosheets as a Highâ€Energy Cathode for Advanced Znâ€Ion Batteries. Advanced Materials, 2018, 30, e1802396.	11.1	495
34	Frontispiece: Boosting the Energy Density of Carbonâ€Based Aqueous Supercapacitors by Optimizing the Surface Charge. Angewandte Chemie - International Edition, 2017, 56, .	7.2	0
35	Frontispiz: Boosting the Energy Density of Carbonâ€Based Aqueous Supercapacitors by Optimizing the Surface Charge. Angewandte Chemie, 2017, 129, .	1.6	0
36	Achieving Ultrahigh Energy Density and Long Durability in a Flexible Rechargeable Quasiâ€Solidâ€State Zn–MnO ₂ Battery. Advanced Materials, 2017, 29, 1700274.	11.1	572

#	Article	IF	CITATIONS
37	Directional Construction of Vertical Nitrogenâ€Doped 1Tâ€2H MoSe ₂ /Graphene Shell/Core Nanoflake Arrays for Efficient Hydrogen Evolution Reaction. Advanced Materials, 2017, 29, 1700748.	11.1	404
38	Boosting the Energy Density of Carbonâ€Based Aqueous Supercapacitors by Optimizing the Surface Charge. Angewandte Chemie, 2017, 129, 5546-5551.	1.6	60
39	Boosting the Energy Density of Carbonâ€Based Aqueous Supercapacitors by Optimizing the Surface Charge. Angewandte Chemie - International Edition, 2017, 56, 5454-5459.	7.2	292
40	An Ultrastable and Highâ€Performance Flexible Fiberâ€Shaped Ni–Zn Battery based on a Ni–NiO Heterostructured Nanosheet Cathode. Advanced Materials, 2017, 29, 1702698.	11.1	314
41	Binder-free WS ₂ nanosheets with enhanced crystallinity as a stable negative electrode for flexible asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 21460-21466.	5.2	89
42	Engineering Thin MoS ₂ Nanosheets on TiN Nanorods: Advanced Electrochemical Capacitor Electrode and Hydrogen Evolution Electrocatalyst. ACS Energy Letters, 2017, 2, 1862-1868.	8.8	167
43	Dualâ€Doped Molybdenum Trioxide Nanowires: A Bifunctional Anode for Fiberâ€Shaped Asymmetric Supercapacitors and Microbial Fuel Cells. Angewandte Chemie, 2016, 128, 6874-6878.	1.6	70
44	Monolithic three-dimensional graphene frameworks derived from inexpensive graphite paper as advanced anodes for microbial fuel cells. Journal of Materials Chemistry A, 2016, 4, 6342-6349.	5.2	45
45	Three-dimensional nickel nitride (Ni ₃ N) nanosheets: free standing and flexible electrodes for lithium ion batteries and supercapacitors. Journal of Materials Chemistry A, 2016, 4, 9844-9849.	5.2	203
46	Ironâ€Based Supercapacitor Electrodes: Advances and Challenges. Advanced Energy Materials, 2016, 6, 1601053.	10.2	358
47	Flexible Ultrafast Aqueous Rechargeable Ni//Bi Battery Based on Highly Durable Single rystalline Bismuth Nanostructured Anode. Advanced Materials, 2016, 28, 9188-9195.	11.1	220
48	Dualâ€Doped Molybdenum Trioxide Nanowires: A Bifunctional Anode for Fiberâ€Shaped Asymmetric Supercapacitors and Microbial Fuel Cells. Angewandte Chemie - International Edition, 2016, 55, 6762-6766.	7.2	230
49	Sulphur-doped Co ₃ O ₄ nanowires as an advanced negative electrode for high-energy asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 10779-10785.	5.2	101
50	Activated carbon fiber paper with exceptional capacitive performance as a robust electrode for supercapacitors. Journal of Materials Chemistry A, 2016, 4, 5828-5833.	5.2	95
51	Advanced Tiâ€Doped Fe ₂ O ₃ @PEDOT Core/Shell Anode for Highâ€Energy Asymmetric Supercapacitors. Advanced Energy Materials, 2015, 5, 1402176.	10.2	416
52	A Novel Exfoliation Strategy to Significantly Boost the Energy Storage Capability of Commercial Carbon Cloth. Advanced Materials, 2015, 27, 3572-3578.	11.1	384
53	Holey Tungsten Oxynitride Nanowires: Novel Anodes Efficiently Integrate Microbial Chemical Energy Conversion and Electrochemical Energy Storage. Advanced Materials, 2015, 27, 3085-3091.	11.1	177
54	Solar-microbial hybrid device based on oxygen-deficient niobium pentoxide anodes for sustainable hydrogen production. Chemical Science, 2015, 6, 6799-6805.	3.7	51

#	Article	IF	CITATIONS
55	Building Threeâ€Dimensional Graphene Frameworks for Energy Storage and Catalysis. Advanced Functional Materials, 2015, 25, 324-330.	7.8	156