Pedro Suau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/801060/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Histone H1 Post-Translational Modifications: Update and Future Perspectives. International Journal of Molecular Sciences, 2020, 21, 5941.	1.8	46
2	A CON-based NMR assignment strategy for pro-rich intrinsically disordered proteins with low signal dispersion: the C-terminal domain of histone H1.0 as a case study. Journal of Biomolecular NMR, 2018, 72, 139-148.	1.6	12
3	Post-translational modifications of the intrinsically disordered terminal domains of histone H1: effects on secondary structure and chromatin dynamics. Chromosoma, 2017, 126, 83-91.	1.0	25
4	Complex Evolutionary History of the Mammalian Histone H1.1–H1.5 Gene Family. Molecular Biology and Evolution, 2017, 34, msw241.	3.5	20
5	The subtype-specific role of histone H1.0 in cancer cell differentiation and intratumor heterogeneity. Translational Cancer Research, 2017, 6, S414-S417.	0.4	3
6	Interplay between histone H1 structure and function. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 444-454.	0.9	36
7	Histone H1 Favors Folding and Parallel Fibrillar Aggregation of the 1–42 Amyloid-β Peptide. Langmuir, 2015, 31, 6782-6790.	1.6	13
8	Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation. Nucleic Acids Research, 2015, 43, 4463-4476.	6.5	35
9	Identification of novel post-translational modifications in linker histones from chicken erythrocytes. Journal of Proteomics, 2015, 113, 162-177.	1.2	28
10	Sequence conservation of linker histones between chicken and mammalian species. Data in Brief, 2014, 1, 60-64.	0.5	6
11	Dynamics and dispensability of variantâ€specific histone H1 Lysâ€26/Serâ€27 and Thrâ€165 postâ€translational modifications. FEBS Letters, 2014, 588, 2353-2362.	1.3	16
12	Contribution of hydrophobic interactions to the folding and fibrillation of histone H1 and its carboxy-terminal domain. Journal of Structural Biology, 2012, 180, 101-109.	1.3	12
13	Secondary structure of protamine in sperm nuclei: an infrared spectroscopy study. BMC Structural Biology, 2011, 11, 14.	2.3	28
14	An inducible helix-Gly-Gly-helix motif in the N-terminal domain of histone H1e: A CD and NMR study. Protein Science, 2009, 11, 214-220.	3.1	28
15	Role of Charge Neutralization in the Folding of the Carboxy-Terminal Domain of Histone H1. Journal of Physical Chemistry B, 2009, 113, 12061-12066.	1.2	25
16	Phosphorylation of the carboxy-terminal domain of histone H1: effects on secondary structure and DNA condensation. Nucleic Acids Research, 2008, 36, 4719-4726.	6.5	71
17	Macromolecular Crowding Induces a Molten Globule State in the C-Terminal Domain of Histone H1. Biophysical Journal, 2007, 93, 2170-2177.	0.2	51
18	Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin. BMC Biology, 2007 5, 22	1.7	68

2

Pedro Suau

#	Article	IF	CITATIONS
19	DNA-induced Secondary Structure of the Carboxyl-terminal Domain of Histone H1. Journal of Biological Chemistry, 2005, 280, 32141-32147.	1.6	86
20	The preferential binding of histone H1 to DNA scaffold-associated regions is determined by its C-terminal domain. Nucleic Acids Research, 2004, 32, 6111-6119.	6.5	34
21	Sequence Complexity of Histone H1 Subtypes. Molecular Biology and Evolution, 2003, 20, 371-380.	3.5	35
22	Sequence and analysis of the 5′ flanking and 5′ untranslated regions of the rat N-methyl-d-aspartate receptor 2A gene. Gene, 2002, 295, 135-142.	1.0	13
23	DNA-induced α-Helical Structure in the NH2-terminal Domain of Histone H1. Journal of Biological Chemistry, 2001, 276, 46429-46435.	1.6	57
24	Induction of Secondary Structure in a COOH-terminal Peptide of Histone H1 by Interaction with the DNA. Journal of Biological Chemistry, 2001, 276, 30898-30903.	1.6	63
25	A helixâ€ŧurn motif in the Câ€ŧerminal domain of histone H1. Protein Science, 2000, 9, 627-636.	3.1	38
26	Evolution of the vertebrate H1 histone class: evidence for the functional differentiation of the subtypes. Molecular Biology and Evolution, 1998, 15, 702-708.	3.5	72
27	Sequence simplicity and evolution of the 3′ untranslated region of the histone H1° Gene. Journal of Molecular Evolution, 1996, 43, 125-134.	0.8	4
28	Cloning and analysis of the coding region of the histone H1º -encoding gene from rat PC12 cells. Gene, 1995, 166, 313-316.	1.0	5
29	Expression of histone H1° in transcriptionally activated supraoptic neurons. Molecular Brain Research, 1995, 29, 317-324.	2.5	6
30	Transcriptional activation of Histone H1° during neuronal terminal differentiation. Developmental Brain Research, 1994, 80, 35-44.	2.1	10
31	Differential expression and gonadal hormone regulation of histone H1° in the developing and adult rat brain. Developmental Brain Research, 1993, 73, 63-70.	2.1	19
32	Cooperative interaction of the C-terminal domain of histone H1 with DNA. Biophysical Chemistry, 1991, 39, 145-152.	1.5	19
33	Kinetic analysis of Ï^-DNA structure formation induced by histone H1 and its C-terminal domain. Biophysical Chemistry, 1989, 33, 133-141.	1.5	3
34	Differential acetylation of core histones in rat cerebral cortex neurons during development and aging. FEBS Journal, 1988, 174, 311-315.	0.2	30
35	Interaction of the c-terminal domain of the histone H1 with DNA. Biochemical Pharmacology, 1988, 37, 1841-1842.	2.0	0
36	Changes in histones H2A and H3 variant composition in differentiating and mature rat brain cortical neurons. Developmental Biology, 1987, 123, 51-58.	0.9	134

Pedro Suau

#	Article	IF	CITATIONS
37	Changes in the proportions of histone H1° subtypes in brain cortical neurons. FEBS Letters, 1987, 210, 161-164.	1.3	19
38	Changes in H1 complement in differentiating rat-brain cortical neurons. FEBS Journal, 1987, 164, 71-76.	0.2	42
39	Condensation of DNA by the C-terminal domain of histone H1 A circular dichroism study. Biophysical Chemistry, 1985, 22, 125-129.	1.5	42
40	Fluorescent properties of histone-1-anilinonaphthalene 8-sulfonate complexes in the presence of denaturant agents: Application to the rapid staining of histones in urea and Triton-urea-polyacrylamide gels. Analytical Biochemistry, 1985, 146, 431-433.	1.1	9
41	Core histone variants and ubiquitinated histones 2A and 2B of rat cerebral cortex neurons. Biochemical and Biophysical Research Communications, 1985, 133, 505-510.	1.0	19
42	Differential kinetics of histone H1o accumulation in neuronal and glial cells from rat cerebral cortex during postnatal development. Biochemical and Biophysical Research Communications, 1984, 123, 697-702.	1.0	42
43	Structural heterogeneity of reconstituted complexes of DNA with typical and intermediate protamines. Biophysical Chemistry, 1983, 18, 257-267.	1.5	13
44	The binding of T4 gene 32 protein to MS2 virus RNA and transfer RNA. Nucleic Acids Research, 1980, 8, 1357-1372.	6.5	4
45	Higher-Order Structures of Chromatin in Solution. FEBS Journal, 1979, 97, 593-602.	0.2	164
46	Neutron-scattering studies of chromatin subunits under a variety of contrast conditions. Journal of Applied Crystallography, 1978, 11, 483-484.	1.9	8
47	A low resolution model for the chromatin core particle by neutron scattering. Nucleic Acids Research, 1977, 4, 3769-3786.	6.5	121
48	Small angle neutron scattering studies of chromatin subunits in solution. Cell, 1977, 10, 139-151.	13.5	135
49	X-ray diffraction studies of nucleoprotamine structure. Journal of Molecular Biology, 1977, 117, 909-926.	2.0	62