List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8010561/publications.pdf Version: 2024-02-01

DETED N LIDKE

#	Article	IF	CITATIONS
1	Cell–Cell Mating Interactions: Overview and Potential of Single-Cell Force Spectroscopy. International Journal of Molecular Sciences, 2022, 23, 1110.	1.8	4
2	Single-cell fluidic force microscopy reveals stress-dependent molecular interactions in yeast mating. Communications Biology, 2021, 4, 33.	2.0	12
3	A New Function for Amyloid-Like Interactions: Cross-Beta Aggregates of Adhesins form Cell-to-Cell Bonds. Pathogens, 2021, 10, 1013.	1.2	13
4	Through the back door: Unconventional protein secretion. Cell Surface, 2020, 6, 100045.	1.5	49
5	Regioselective degradation of [beta] 1,3 glucan by ferrous ion and hydrogen peroxide (Fenton) Tj ETQq1 1 0.78	4314 rgB ⁻ 1.1	「/Oyerlock I
6	Enzymatic Analysis of Yeast Cell Wall-Resident GAPDH and Its Secretion. MSphere, 2020, 5, .	1.3	4
7	Fluidic Force Microscopy Captures Amyloid Bonds between Microbial Cells. Trends in Microbiology, 2019, 27, 728-730.	3.5	15
8	Fluidic Force Microscopy Demonstrates That Homophilic Adhesion by <i>Candida albicans</i> Als Proteins Is Mediated by Amyloid Bonds between Cells. Nano Letters, 2019, 19, 3846-3853.	4.5	38
9	Serum Amyloid P Component Binds Fungal Surface Amyloid and Decreases Human Macrophage Phagocytosis and Secretion of Inflammatory Cytokines. MBio, 2019, 10, .	1.8	25
10	An Amyloid Core Sequence in the Major Candida albicans Adhesin Als1p Mediates Cell-Cell Adhesion. MBio, 2019, 10, .	1.8	21
11	The huntingtin inclusion is a dynamic phase-separated compartment. Life Science Alliance, 2019, 2, e201900489.	1.3	30
12	Amyloid-Like β-Aggregates as Force-Sensitive Switches in Fungal Biofilms and Infections. Microbiology and Molecular Biology Reviews, 2018, 82, .	2.9	50
13	What We Do Not Know about Fungal Cell Adhesion Molecules. Journal of Fungi (Basel, Switzerland), 2018, 4, 59.	1.5	61
14	Serum Amyloid P Component and Systemic Fungal Infection: Does It Protect the Host or Is It a Trojan Horse?. Open Forum Infectious Diseases, 2016, 3, ofw166.	0.4	19
15	Molecular Basis for Strain Variation in the Saccharomyces cerevisiae Adhesin Flo11p. MSphere, 2016, 1, .	1.3	36
16	Force Sensitivity in Saccharomyces cerevisiae Flocculins. MSphere, 2016, 1, .	1.3	22
17	Glycomics for Microbes and Microbiologists. MBio, 2016, 7, .	1.8	4
18	The Human Disease-Associated AÎ ² Amyloid Core Sequence Forms Functional Amyloids in a Fungal Adhesin. MBio, 2016, 7, e01815-15.	1.8	11

#	Article	IF	CITATIONS
19	A unique biofilm in human deep mycoses: fungal amyloid is bound by host serum amyloid P component. Npj Biofilms and Microbiomes, 2015, 1, .	2.9	32
20	Quantitative Analyses of Force-Induced Amyloid Formation in Candida albicans Als5p: Activation by Standard Laboratory Procedures. PLoS ONE, 2015, 10, e0129152.	1.1	7
21	Garcinia xanthochymus Benzophenones Promote Hyphal Apoptosis and Potentiate Activity of Fluconazole against Candida albicans Biofilms. Antimicrobial Agents and Chemotherapy, 2015, 59, 6032-6038.	1.4	20
22	Forces in yeast flocculation. Nanoscale, 2015, 7, 1760-1767.	2.8	37
23	Garcinia benzophenones promote hyphal apoptosis and potentiate activity of fluconazole in Candida albicans biofilms. Planta Medica, 2015, 81, .	0.7	0
24	Peptide Detection of Fungal Functional Amyloids in Infected Tissue. PLoS ONE, 2014, 9, e86067.	1.1	22
25	Between Amyloids and Aggregation Lies a Connection with Strength and Adhesion. New Journal of Science, 2014, 2014, 1-12.	1.0	19
26	Role of Force-Sensitive Amyloid-Like Interactions in Fungal Catch Bonding and Biofilms. Eukaryotic Cell, 2014, 13, 1136-1142.	3.4	26
27	Quantifying the Forces Driving Cell–Cell Adhesion in a Fungal Pathogen. Langmuir, 2013, 29, 13473-13480.	1.6	49
28	Single-cell force spectroscopy of Als-mediated fungal adhesion. Analytical Methods, 2013, 5, 3657.	1.3	41
29	Single-cell force spectroscopy of the medically important Staphylococcus epidermidis–Candida albicans interaction. Nanoscale, 2013, 5, 10894.	2.8	82
30	Nanoscale analysis of caspofungin-induced cell surface remodelling in Candida albicans. Nanoscale, 2013, 5, 1105-1115.	2.8	49
31	Does Candida albicans Als5p Amyloid Play a Role in Commensalism in Caenorhabditis elegans?. Eukaryotic Cell, 2013, 12, 1674-1674.	3.4	Ο
32	Does Candida albicans Als5p Amyloid Play a Role in Commensalism in Caenorhabditis elegans?. Eukaryotic Cell, 2013, 12, 703-711.	3.4	10
33	Functional amyloid formation by Streptococcus mutans. Microbiology (United Kingdom), 2012, 158, 2903-2916.	0.7	117
34	Unzipping a Functional Microbial Amyloid. ACS Nano, 2012, 6, 7703-7711.	7.3	49
35	Strengthening relationships: amyloids create adhesion nanodomains in yeasts. Trends in Microbiology, 2012, 20, 59-65.	3.5	100
36	New Features of Invasive Candidiasis in Humans: Amyloid Formation by Fungi and Deposition of Serum Amyloid P Component by the Host. Journal of Infectious Diseases, 2012, 206, 1473-1478.	1.9	34

#	Article	IF	CITATIONS
37	Single-Molecule Imaging and Functional Analysis of Als Adhesins and Mannans during Candida albicans Morphogenesis. ACS Nano, 2012, 6, 10950-10964.	7.3	84
38	Atomic force microscopy – looking at mechanosensors on the cell surface. Journal of Cell Science, 2012, 125, 4189-95.	1.2	39
39	A Role for Amyloid in Cell Aggregation and Biofilm Formation. PLoS ONE, 2011, 6, e17632.	1.1	108
40	Accelerated and Adaptive Evolution of Yeast Sexual Adhesins. Molecular Biology and Evolution, 2011, 28, 3127-3137.	3.5	19
41	On the evolution of fungal and yeast cell walls. Yeast, 2010, 27, 479-488.	0.8	46
42	A screen for deficiencies in GPIâ€anchorage of wall glycoproteins in yeast. Yeast, 2010, 27, 583-596.	0.8	20
43	Structure and Function of Glycosylated Tandem Repeats from Candida albicans Als Adhesins. Eukaryotic Cell, 2010, 9, 405-414.	3.4	61
44	Force-induced formation and propagation of adhesion nanodomains in living fungal cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20744-20749.	3.3	179
45	Postmortem candidaemia: marker of disseminated disease. Journal of Clinical Pathology, 2010, 63, 337-340.	1.0	31
46	Yeast Cell Adhesion Molecules Have Functional Amyloid-Forming Sequences. Eukaryotic Cell, 2010, 9, 393-404.	3.4	145
47	Clycoconjugate structure and function in fungal cell walls. , 2010, , 169-183.		5
48	Chapter 15 GPI Proteins in Biogenesis and Structure of Yeast Cell Walls. The Enzymes, 2009, , 321-356.	0.7	9
49	Unfolding Individual Als5p Adhesion Proteins on Live Cells. ACS Nano, 2009, 3, 1677-1682.	7.3	88
50	Amyloid Formation By Peptides From Yeast Adhesins. Biophysical Journal, 2009, 96, 89a.	0.2	0
51	Amyloidâ€ f orming peptides from fungal adhesins. FASEB Journal, 2009, 23, 851.3.	0.2	0
52	The Antifungal Vaccine Derived from the Recombinant N Terminus of Als3p Protects Mice against the Bacterium <i>Staphylococcus aureus</i> . Infection and Immunity, 2008, 76, 4574-4580.	1.0	133
53	<i>Candida albicans</i> Als Adhesins Have Conserved Amyloid-Forming Sequences. Eukaryotic Cell, 2008, 7, 776-782.	3.4	120
54	Antibody Titer Threshold Predicts Antiâ€Candidal Vaccine Efficacy Even though the Mechanism of Protection Is Induction of Cellâ€Mediated Immunity. Journal of Infectious Diseases, 2008, 197, 967-971.	1.9	69

#	Article	IF	CITATIONS
55	Conserved Processes and Lineage-Specific Proteins in Fungal Cell Wall Evolution. Eukaryotic Cell, 2007, 6, 2269-2277.	3.4	52
56	Polymicrobial bloodstream infections involving Candida species: analysis of patients and review of the literature. Diagnostic Microbiology and Infectious Disease, 2007, 59, 401-406.	0.8	208
57	A Biochemical Guide to Yeast Adhesins: Glycoproteins for Social and Antisocial Occasions. Microbiology and Molecular Biology Reviews, 2007, 71, 282-294.	2.9	271
58	Candida albicansAls proteins mediate aggregation with bacteria and yeasts. Medical Mycology, 2007, 45, 363-370.	0.3	106
59	Discovery of Recurrent Sequence Motifs in Saccharomyces cerevisiae Cell Wall Proteins. Match, 2007, 58, 281-299.	0.8	3
60	Threonine-Rich Repeats Increase Fibronectin Binding in the Candidaalbicans Adhesin Als5p. Eukaryotic Cell, 2006, 5, 1664-1673.	3.4	106
61	Comparative Genomics Reveals Long, Evolutionarily Conserved, Low-Complexity Islands in Yeast Proteins. Journal of Molecular Evolution, 2006, 63, 415-425.	0.8	9
62	Composition-Modified Matrices Improve Identification of Homologs of Saccharomyces cerevisiae Low-Complexity Glycoproteins. Eukaryotic Cell, 2006, 5, 628-637.	3.4	21
63	Inhibition of Adherence and Killing of Candida albicans with a 23-Mer Peptide (Fn/23) with Dual Antifungal Properties. Antimicrobial Agents and Chemotherapy, 2004, 48, 4337-4341.	1.4	22
64	Degenerate Peptide Recognition by Candida albicans Adhesins Als5p and Als1p. Infection and Immunity, 2004, 72, 2029-2034.	1.0	76
65	Global Cell Surface Conformational Shift Mediated by a Candida albicans Adhesin. Infection and Immunity, 2004, 72, 4948-4955.	1.0	66
66	The ER-Golgi v-SNARE Bet1p is required for cross-linking Â-agglutinin to the cell wall in yeast. Microbiology (United Kingdom), 2004, 150, 3219-3228.	0.7	6
67	Role of Fig2p in Agglutination in Saccharomyces cerevisiae. Eukaryotic Cell, 2002, 1, 843-845.	3.4	14
68	Interaction of α-Agglutinin and a -Agglutinin, Saccharomyces cerevisiae Sexual Cell Adhesion Molecules. Journal of Bacteriology, 2001, 183, 2874-2880.	1.0	48
69	Systematic analysis of oxidative degradation of polysaccharides using PAGE and HPLC–MS. Carbohydrate Research, 2001, 330, 131-139.	1.1	12
70	Delineation of Functional Regions within the Subunits of theSaccharomyces cerevisiae Cell Adhesion Molecule a-Agglutinin. Journal of Biological Chemistry, 2001, 276, 15768-15775.	1.6	25
71	Environmentally induced reversible conformational switching in the yeast cell adhesion protein α-agglutinin. Protein Science, 2001, 10, 1113-1123.	3.1	12
72	A CD2-Based Model of Yeast a-Agglutinin Elucidates Solution Properties and Binding Characteristics. IUBMB Life, 2000, 50, 105-113.	1.5	9

#	Article	IF	CITATIONS
73	A CD2-Based Model of Yeast α-Agglutinin Elucidates Solution Properties and Binding Characteristics. IUBMB Life, 2000, 50, 105-113.	1.5	12
74	The Spheroplast Lysis Assay for Yeast in Microtiter Plate Format. Applied and Environmental Microbiology, 1999, 65, 3325-3327.	1.4	14
75	A spheroplast rate assay for determination of cell wall integrity in yeast. , 1998, 14, 1159-1166.		63
76	Cell Wall Architecture in Yeast: New Structure and New Challenges. Journal of Bacteriology, 1998, 180, 3735-3740.	1.0	550
77	Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked β-1,3-/β-l,6-glucan heteropolymer. Clycobiology, 1996, 6, 337-345.	1.3	242
78	Genetics of a-agglutunin function in Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1995, 247, 409-415.	2.4	12
79	Homology modeling of an immunoglobulinâ€like domain in the <i>Saccharomyces cerevisiae</i> adhesion protein αâ€agglutinin. Protein Science, 1995, 4, 2168-2178.	3.1	20
80	Glycosyl phosphatidylinositol-dependent cross-linking of alpha-agglutinin and beta 1,6-glucan in the Saccharomyces cerevisiae cell wall Journal of Cell Biology, 1995, 128, 333-340.	2.3	208
81	Identification of six complementation classes involved in the biosynthesis of glycosylphosphatidylinositol anchors in Saccharomyces cerevisiae Journal of Cell Biology, 1995, 130, 1333-1344.	2.3	83
82	Structure of Saccharomyces cerevisiae α-Agglutinin. Journal of Biological Chemistry, 1995, 270, 26168-26177.	1.6	62
83	Is there a role for GPIs in yeast cell-wall assembly?. Trends in Cell Biology, 1994, 4, 42-45.	3.6	110
84	α-Agglutinin expression in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 1989, 161, 46-51.	1.0	21
85	Pheromone induction of agglutination in Saccharomyces cerevisiae a cells. Journal of Bacteriology, 1987, 169, 4811-4815.	1.0	18
86	Agglutination and mating activity of the MF alpha 2-encoded alpha-factor analog in Saccharomyces cerevisiae. Journal of Bacteriology, 1986, 168, 1472-1475.	1.0	5
87	A demonstration of erythrocyte membrane asymmetry. Journal of Chemical Education, 1985, 62, 621.	1.1	1
88	Determination of reducing sugars in the nanomole range with tetrazolium blue. Journal of Proteomics, 1985, 11, 109-115.	2.4	154
89	Structure-activity relationships in the dodecapeptide .alphafactor of Saccharomyces cerevisiae: position 6 analogs are poor inducers of agglutinability. Biochemistry, 1985, 24, 3332-3337.	1.2	18
90	Structure-activity relationships in the dodecapeptide .alpha. factor of Saccharomyces cerevisiae. Biochemistry, 1983, 22, 1298-1304.	1.2	40

6

#	Article	IF	CITATIONS
91	Developmental restriction of mobility of concanavalin a receptors. Journal of Cellular Physiology, 1982, 113, 8-10.	2.0	2
92	Morphogenic effects of alpha-factor on Saccharomyces cerevisiae a cells. Journal of Bacteriology, 1976, 127, 610-618.	1.0	129
93	Characterization of a yeast d-mannan with an $\hat{l}\pm$ -d-glucosyl phosphate residue as an important immunochemical determinant. Carbohydrate Research, 1974, 37, 23-35.	1.1	25
94	Structure and Immunochemistry of the Cell Wall Mannans from Saccharomyces chevalieri, Saccharomyces italicus, Saccharomyces diastaticus , and Saccharomyces carlsbergensis. Journal of Bacteriology, 1974, 117, 461-467.	1.0	40
95	Structure and Conservation of Amyloid Spines From the Candida albicans Als5 Adhesin. Frontiers in Molecular Biosciences, 0, 9, .	1.6	4