Ting-Yu Shih

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8010552/publications.pdf

Version: 2024-02-01

18	1,357	12	17
papers	citations	h-index	g-index
19	19	19	2315
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A facile approach to enhance antigen response for personalized cancer vaccination. Nature Materials, 2018, 17, 528-534.	13.3	313
2	Injectable cryogel-based whole-cell cancer vaccines. Nature Communications, 2015, 6, 7556.	5.8	312
3	Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood â^' brain barrier using MRI-guided focused ultrasound. Journal of Controlled Release, 2014, 189, 123-132.	4.8	216
4	Injectable, Tough Alginate Cryogels as Cancer Vaccines. Advanced Healthcare Materials, 2018, 7, e1701469.	3.9	96
5	A biomaterial-based vaccine eliciting durable tumour-specific responses against acute myeloid leukaemia. Nature Biomedical Engineering, 2020, 4, 40-51.	11.6	83
6	An injectable bone marrow–like scaffold enhances T cell immunity after hematopoietic stem cell transplantation. Nature Biotechnology, 2019, 37, 293-302.	9.4	79
7	Topical Application of a Mast Cell Stabilizer Improves Impaired Diabetic Wound Healing. Journal of Investigative Dermatology, 2020, 140, 901-911.e11.	0.3	58
8	Compression-induced dedifferentiation of adipocytes promotes tumor progression. Science Advances, 2020, 6, eaax5611.	4.7	53
9	Acetalated Dextran Nanoparticles Loaded into an Injectable Alginate Cryogel for Combined Chemotherapy and Cancer Vaccination. Advanced Functional Materials, 2019, 29, 1903686.	7.8	41
10	Injectable Shape-Memorizing Three-Dimensional Hyaluronic Acid Cryogels for Skin Sculpting and Soft Tissue Reconstruction. Tissue Engineering - Part A, 2017, 23, 243-251.	1.6	28
11	Treating ischemia via recruitment of antigen-specific T cells. Science Advances, 2019, 5, eaav6313.	4.7	26
12	Ultrasound-triggered release reveals optimal timing of CpG-ODN delivery from a cryogel cancer vaccine. Biomaterials, 2021, 279, 121240.	5.7	16
13	Cryogel vaccines effectively induce immune responses independent of proximity to the draining lymph nodes. Biomaterials, 2022, 281, 121329.	5.7	13
14	Scaffold Vaccines for Generating Robust and Tunable Antibody Responses. Advanced Functional Materials, 2022, 32, .	7.8	9
15	Targeting tumor extracellular matrix activates the tumor-draining lymph nodes. Cancer Immunology, Immunotherapy, 2022, 71, 2957-2968.	2.0	6
16	Delivery of targeted gene therapies using a hybrid cryogel-coated prosthetic vascular graft. PeerJ, 2019, 7, e7377.	0.9	5
17	Generation of the Compression-induced Dedifferentiated Adipocytes (CiDAs) Using Hypertonic Medium. Bio-protocol, 2021, 11, e3920.	0.2	3
18	Abstract 117: Development of a Hybrid Cryogel-coated Prosthetic Vascular Graft for Delivery of Targeted Gene Therapies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	1.1	0