Knut Marthinsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8010365/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials. Progress in Materials Science, 2018, 92, 284-359.	16.0	414
2	Three dimensional atom probe investigation on the formation of Al3(Sc,Zr)-dispersoids in aluminium alloys. Scripta Materialia, 2004, 51, 333-337.	2.6	197
3	Precipitation kinetic of Al3(Sc,Zr) dispersoids in aluminium. Journal of Alloys and Compounds, 2009, 470, 107-110.	2.8	134
4	Modeling the evolution in microstructure and properties during plastic deformation of f.c.cmetals and alloys – an approach towards a unified model. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 322, 176-193.	2.6	114
5	Segregation of Mg, Cu and their effects on the strength of Al Σ5 (210)[001] symmetrical tilt grain boundary. Acta Materialia, 2018, 145, 235-246.	3.8	101
6	The influence of spatial grain size correlation and topology on normal grain growth in two dimensions. Acta Materialia, 1996, 44, 1681-1689.	3.8	88
7	Precipitation crystallography of plate-shaped Al6(Mn,Fe) dispersoids in AA5182 alloy. Acta Materialia, 2012, 60, 5963-5974.	3.8	83
8	On the mechanisms of dynamic recovery. Scripta Materialia, 2002, 47, 607-611.	2.6	77
9	The development of recrystallization microstructures studied experimentally and by computer simulation. Acta Metallurgica, 1989, 37, 135-145.	2.1	70
10	Quantifying the grain boundary segregation strengthening induced by post-ECAP aging in an Al-5Cu alloy. Acta Materialia, 2018, 155, 199-213.	3.8	62
11	Effective structure factors in many-beam X-ray diffraction – use of the second Bethe approximation. Acta Crystallographica Section A: Foundations and Advances, 1983, 39, 854-860.	0.3	60
12	The Effect of Preaging Deformation on the Precipitation Behavior of an Al-Mg-Si Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 4006-4014.	1.1	60
13	The formation of Al3(ScxZryHf1â^'xâ^'y)-dispersoids in aluminium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 421, 154-160.	2.6	59
14	TEM study of β′ precipitate interaction mechanisms with dislocations and β′ interfaces with the aluminium matrix in Al–Mg–Si alloys. Materials Characterization, 2013, 75, 1-7.	1.9	59
15	Thermal stability of Al3(Scx,Zr1â^'x)-dispersoids in extruded aluminium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 475, 241-248.	2.6	57
16	On the mechanisms of work hardening and flow-stress saturation. Scripta Materialia, 2000, 43, 55-62.	2.6	56
17	HRTEM study of the effect of deformation on the early precipitation behaviour in an AA6060 Al–Mg–Si alloy. Philosophical Magazine, 2011, 91, 3744-3754.	0.7	56
18	Formation of <mml:math <br="" altimg="si1.gif" xmins:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"> <mml:mrow> <mml:mrow> <mml:mo> { </mml:mo> <mml:mrow> <mml:mn> 1 </mml:mn> <mm accent="true"> <mml:mn> 2 </mml:mn> <mml:mo> Â⁻ </mml:mo> </mm </mml:mrow> <mml:mn> 1 twin boundaries in titanium by kinking mechanism through accumulative dislocation slip. Acta Materialia, 2016, 120, 403-414.</mml:mn></mml:mrow></mml:mrow></mml:math>	l:mrow> <n 1n 8\$\$mml:</n 	nml:mover mæw> <mml< td=""></mml<>

#	Article	IF	CITATIONS
19	Precipitation and recrystallisation in Al–Mn–Zr with and without Sc. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 387-389, 936-939.	2.6	53
20	The influence of microchemistry on the softening behaviour of two cold-rolled Al–Mn–Fe–Si alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 601, 86-96.	2.6	47
21	Impurity effect of Mg on the generalized planar fault energy of Al. Journal of Materials Science, 2016, 51, 6552-6568.	1.7	46
22	Effect of heterogeneously distributed pre-existing dispersoids on the recrystallization behavior of a cold-rolled Al–Mn–Fe–Si alloy. Materials Characterization, 2015, 102, 92-97.	1.9	45
23	A general model for metal plasticity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 234-236, 1095-1098.	2.6	44
24	Magnesium: Comparison of density functional theory calculations with electron and x-ray diffraction experiments. Journal of Chemical Physics, 2003, 119, 11359-11366.	1.2	44
25	Evolution in microstructure and properties during non-isothermal annealing of a cold-rolled Al–Mn–Fe–Si alloy with different microchemistry states. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 216-229.	2.6	41
26	Two-stage annealing of a cold-rolled Al–Mn–Fe–Si alloy with different microchemistry states. Journal of Materials Processing Technology, 2015, 221, 87-99.	3.1	39
27	Combined effect of deformation and artificial aging on mechanical properties of Al–Mg–Si Alloy. Transactions of Nonferrous Metals Society of China, 2012, 22, 1824-1830.	1.7	34
28	An investigation of dilute Al–Hf and Al–Hf–Si alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 387-389, 940-943.	2.6	32
29	Ageing and work-hardening behaviour of a commercial AA7108 aluminium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 524, 151-157.	2.6	32
30	Modeling recrystallization kinetics, grain sizes, and textures during multipass hot rolling. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 4133-4144.	1.1	30
31	The effect of simultaneous deformation and annealing on the precipitation behaviour and mechanical properties of an Al–Mg–Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 565, 228-235.	2.6	28
32	The deformation and work hardening behaviour of a SPD processed Al-5Cu alloy. Journal of Alloys and Compounds, 2017, 697, 239-248.	2.8	28
33	Recrystallization Textures and the Evolution of the P-Orientation as a Function of Precipitation in an AA3103 Alloy. Materials Science Forum, 2002, 408-412, 1471-1476.	0.3	27
34	Effect of Pre-Deformation on Mechanical Response of an Artificially Aged Al-Mg-Si Alloy. Materials Transactions, 2011, 52, 1356-1362.	0.4	27
35	The effects of quench rate and pre-deformation on precipitation hardening in Al–Mg–Si alloys with different Cu amounts. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 609, 72-79.	2.6	27
36	Three-Point Bending of Heat-Treatable Aluminum Alloys: Influence of Microstructure and Texture on Bendability and Fracture Behavior. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3386-3398.	1.1	26

#	Article	IF	CITATIONS
37	The Effect of Solute Atoms on Grain Boundary Migration: A Solute Pinning Approach. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 3364-3375.	1.1	26
38	Deformation of an Al–7Mg alloy with extensive structural micro-segregations during dynamic plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 160-167.	2.6	26
39	On the minimum number of beams needed to distinguish enantiomorphs in X-ray and electron diffraction. Acta Crystallographica Section A: Foundations and Advances, 1994, 50, 647-650.	0.3	24
40	Characterization of 3-D particle distributions and effects on recrystallization kinetics and microstructure. Scripta Materialia, 1998, 39, 1177-1183.	2.6	24
41	Extinction-free electron diffraction refinement of bonding in SrTiO3. Acta Crystallographica Section A: Foundations and Advances, 2004, 60, 402-408.	0.3	24
42	Dynamic strain ageing in an AlMg alloy at different strain rates and temperatures: Experiments and constitutive modelling. International Journal of Plasticity, 2022, 151, 103215.	4.1	24
43	Structure factor determination in non-centrosymmetric crystals by a two-dimensional CBED-based multi-parameter refinement method. Ultramicroscopy, 1993, 49, 159-170.	0.8	23
44	On the Effect of Atoms in Solid Solution on Grain Growth Kinetics. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 4882-4890.	1.1	23
45	Determination of structure factor phase invariants from non-systematic many-beam effects in convergent-beam patterns. Ultramicroscopy, 1988, 26, 25-30.	0.8	22
46	Efficient beam-selection criteria in quantitative convergent beam electron diffraction. Ultramicroscopy, 1996, 66, 89-99.	0.8	22
47	A 3D Monte Carlo study of the effect of grain boundary anisotropy and particles on the size distribution of grains after recrystallisation and grain growth. Computational Materials Science, 2010, 48, 267-281.	1.4	22
48	Orientation Preference of Recrystallization in Supersaturated Aluminum Alloys Influenced by Concurrent Precipitation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 1378-1388.	1.1	22
49	On the breakdown of Friedel's law in electron backscattering channelling patterns. Acta Crystallographica Section A: Foundations and Advances, 1988, 44, 700-707.	0.3	21
50	Particle Effects on Recrystallization of Metals. Materials Science Forum, 1993, 113-115, 41-54.	0.3	21
51	Modelling the evolution in microstructure and properties during processing of aluminium alloys. Journal of Materials Processing Technology, 2001, 117, 333-340.	3.1	21
52	The effect of boundary spacing on substructure strengthening. Materials Science and Technology, 2004, 20, 1377-1382.	0.8	21
53	The effect of heating rate on the softening behaviour of a deformed Al–Mn alloy with strong and weak concurrent precipitation. Materials Characterization, 2015, 110, 215-221.	1.9	21
54	Combined effect of Mg and vacancy on the generalized planar fault energy of Al. Journal of Alloys and Compounds, 2017, 690, 841-850.	2.8	21

#	Article	IF	CITATIONS
55	Microstructure Evolution and Recrystallization Resistance of a 7055 Alloy Fabricated by Spray Forming Technology and by Conventional Ingot Metallurgy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 5378-5388.	1.1	21
56	Many-beam effects and phase information in electron channelling patterns. Acta Crystallographica Section A: Foundations and Advances, 1986, 42, 484-492.	0.3	20
57	The Effect of Precipitation on the Recrystallization Behavior of a Supersaturated, Cold Rolled AA3103 Aluminium Alloy. Materials Science Forum, 2002, 396-402, 469-474.	0.3	19
58	Precipitation, strength and work hardening of age hardened aluminium alloys. IOP Conference Series: Materials Science and Engineering, 2015, 89, 012013.	0.3	19
59	Rapid precipitation of dispersoids during extrusion of an Al–0.91wt.% Mn–0.13wt.% Zr–0.17wt.% Sc-alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 424, 174-180.	2.6	18
60	Work Hardening Behaviour of Heat-Treatable Al-Mg-Si-Alloys. Materials Science Forum, 2006, 519-521, 1901-1906.	0.3	17
61	Factors affecting the strength of P{011}〈566〉-texture after annealing of a cold-rolled Al–Mn–Fe–Si alloy. Journal of Materials Science, 2015, 50, 5091-5103.	1.7	17
62	A study of charge density in copper. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, 223-230.	0.3	16
63	The effect of heavy deformation on the precipitation in an Al-1.3Cu-1.0Mg-0.4Si†wt.% alloy. Materials and Design, 2020, 186, 108203.	3.3	16
64	Formation of incoherent deformation twin boundaries in a coarse-grained Al-7Mg alloy. Applied Physics Letters, 2015, 107, 091901.	1.5	15
65	Soft particles assisted grain refinement and strengthening of an Al-Bi-Zn alloy subjected to ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 703, 304-313.	2.6	15
66	Comparative analysis of the size distributions of linear, planar, and spatial Poisson Voronoi cells. Materials Characterization, 1996, 36, 53-63.	1.9	14
67	Use of quantitative convergent-beam electron diffraction in materials science. , 1999, 46, 130-145.		14
68	A unified microstructural metal plasticity model applied in testing, processing, and forming of aluminium alloys. International Journal of Materials Research, 2005, 96, 532-545.	0.8	14
69	Substructure Strengthening in Aluminium Alloys. Materials Science Forum, 2000, 331-337, 1387-1392.	0.3	12
70	The spatial distribution of nucleation sites and its effect on recrystallization kinetics in commercial aluminum alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 2705-2715.	1.1	12
71	Isothermal annealing of cold-rolled Al–Mn–Fe–Si alloy with different microchemistry states. Transactions of Nonferrous Metals Society of China, 2014, 24, 3840-3847.	1.7	12
72	On the sluggish recrystallization of a cold-rolled Al–Mn–Fe–Si alloy. Journal of Materials Science, 2016, 51, 1632-1643.	1.7	12

#	Article	IF	CITATIONS
73	Effect of Changing Homogenization Treatment on the Particle Structure in Mn-Containing Aluminium Alloys. Materials Science Forum, 2007, 558-559, 301-306.	0.3	11
74	Experimental and theoretical study of electron density and structure factors in CoSb3. Ultramicroscopy, 2011, 111, 847-853.	0.8	11
75	Determination of crystal symmetry from electron channelling patterns. Acta Crystallographica Section A: Foundations and Advances, 1988, 44, 693-700.	0.3	10
76	Grain size correlation during normal grain growth in one dimension. Scripta Materialia, 2006, 55, 939-942.	2.6	10
77	Effect of quenching rate on microstructure and mechanical properties of commercial AA7108 aluminium alloy. Transactions of Nonferrous Metals Society of China, 2012, 22, 1872-1877.	1.7	10
78	Through-process sensitivity analysis on the effect of process variables on strength in extruded Al–Mg–Si alloys. Journal of Materials Processing Technology, 2012, 212, 171-180.	3.1	10
79	Non-centrosymmetry Effects and Polarity Determination in Ill–V Semiconductors. Acta Crystallographica Section A: Foundations and Advances, 1997, 53, 366-375.	0.3	9
80	Texture Evolution of an AA3xxx Alloy after Different Homogenisation Treatments. Materials Science Forum, 2002, 396-402, 463-468.	0.3	9
81	Electron energy loss spectroscopy of theL2,3edge of phosphorus skutterudites and electronic structure calculations. Physical Review B, 2009, 80, .	1.1	9
82	Evolution in microstructure and mechanical properties during back-annealing of AlMnFeSi alloy. Transactions of Nonferrous Metals Society of China, 2012, 22, 1878-1883.	1.7	9
83	The effect of iron and the precipitation behavior of iron during annealing of a cold deformed commercial purity aluminium alloy. Materials Characterization, 2017, 129, 18-23.	1.9	9
84	Correlating oriented grain number density of recrystallisation in particle-containing aluminium alloys. Transactions of Nonferrous Metals Society of China, 2018, 28, 220-225.	1.7	9
85	Determination of structure-factor phase invariants and effective structure factors in non-centrosymmetric crystals. Acta Crystallographica Section A: Foundations and Advances, 1988, 44, 558-562.	0.3	8
86	Work-hardening behaviour of a heat-treatable AA7108 aluminium alloy deformed to intermediate strains by compression. Journal of Materials Science, 2010, 45, 5323-5331.	1.7	8
87	Interface energy determination for the fully coherentβ″ phase in Al–Mg–Si: making a case for a first principles based hybrid atomistic modelling scheme. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 085018.	0.8	8
88	Microstructural Evolution during Isothermal Annealing of a Cold-Rolled Al-Mn-Fe-Si Alloy with Different Microchemistry States. Materials Science Forum, 0, 794-796, 1163-1168.	0.3	8
89	Industrial Verification of Microstructural Models for Thermomechanical Processing by Application to Hot Rolling of AA3104. Materials Science Forum, 2000, 331-337, 551-556.	0.3	7
90	Anisotropy of Bending Properties in Industrial Heat-Treatable Extruded Aluminium Alloys. Materials Science Forum, 2010, 638-642, 487-492.	0.3	7

#	Article	IF	CITATIONS
91	Modelling the Evolution in Microchemistry and its Effects on the Softening Behavior of Cold Rolled AlFeMnSi-Alloys during Annealing. Materials Science Forum, 2013, 753, 143-146.	0.3	7
92	Modelling Microstructure and Properties during Annealing of Cold-Rolled Al-Mn-Fe-Si-Alloys with Different Microchemistries. Materials Science Forum, 0, 783-786, 57-62.	0.3	7
93	The Influence of Processing Conditions on Microchemistry and the Softening Behavior of Cold Rolled Al-Mn-Fe-Si Alloys. Metals, 2016, 6, 61.	1.0	7
94	Characterization of the Density and Spatial Distribution of Dispersoids in Al-Mg-Si Alloys. Metals, 2019, 9, 26.	1.0	7
95	On the sign ambiguity of triplet phases in nonsystematic many-beam effects in CBED patterns. Acta Crystallographica Section A: Foundations and Advances, 1993, 49, 324-330.	0.3	6
96	The embedded-atom model applied to vacancy formation in bulk aluminium and lithium. Journal of Physics Condensed Matter, 1999, 11, 3663-3677.	0.7	6
97	Coupled FEM and Microstructure Modeling Applied to Rolling and Extrusion of Aluminium Alloys. Materials Science Forum, 2003, 426-432, 3777-3782.	0.3	6
98	Hardening of Al-Mg-Si Alloys and Effect of Particle Structure. Materials Science Forum, 0, 706-709, 283-288.	0.3	6
99	Isothermal and Non-Isothermal Annealing of Cold-Rolled Al-Mn-Fe-Si Alloys with Different Microchemistry States. Materials Science Forum, 0, 783-786, 174-179.	0.3	6
100	Commercial spectrometer modifications for energy filtering of electron diffraction patterns and images. Ultramicroscopy, 1993, 52, 454-458.	0.8	5
101	Experimental and theoretical investigations of EELS near-edge fine structure in TiAl with and without ternary addition of V, Cr, or Mn. Physical Review B, 1998, 57, 1585-1593.	1.1	5
102	Orientation Independent and Dependent Subgrain Growth During Iso-Thermal Annealing of High-Purity and Commercial Purity Aluminium. Metals, 2019, 9, 1032.	1.0	5
103	Revealing abnormal {11 <mmi:math xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math</td"><td>2.8</td><td>5</td></mmi:math>	2.8	5
104	Subjected to split Hopkinson pressure bar. Journal of Alloys and Compounds, 2019, 703, 513-523. Numerical Modeling of Oxy-Fuel and Air-fuel Burners for Aluminium Melting. , 0, , 1037-1042.		5
105	Analytical filtering of low-angle inelastic scattering contributions toCBED contrast. Ultramicroscopy, 1994, 55, 268-275.	0.8	4
106	Repeated grain boundary and grain corner nucleated recrystallization in one- and two-dimensional grain structures. Modelling and Simulation in Materials Science and Engineering, 1996, 4, 87-100.	0.8	4
107	Transformation kinetics and microstructure for grain boundary nucleated recrystallization in two dimensions. Acta Materialia, 1997, 45, 1127-1136.	3.8	4
108	Modelling the Work Hardening in Cold Rolled and Annealed Aluminium Sheet. Materials Science Forum, 2000, 331-337, 557-564.	0.3	4

#	Article	IF	CITATIONS
109	The Effect of Deformation on the Work Hardening Behaviour after Aging of Two Commercial Al-Mg-Si Alloys. Materials Science Forum, 2010, 638-642, 261-266.	0.3	4
110	Effect of alloying elements on stage-III work-hardening behaviour of Al–Zn–Mg(–Cu) alloys. International Journal of Materials Research, 2012, 103, 603-608.	0.1	4
111	Characterization the Softening Behavior of Cold Rolled AlMnFeSi-Alloys during Conditions of Concurrent Precipitation. Materials Science Forum, 2013, 753, 231-234.	0.3	4
112	The <i>ALFLOW</i> -Model - A Microstructural Approach to Constitutive Plasticity-Modelling of Aluminium Alloys. Materials Science Forum, 2000, 331-337, 1231-1242.	0.3	3
113	The Effect of Sc on the Extrudability and Recrystallisation Resistance of Al-Mn-Zr-Alloys. Materials Science Forum, 2004, 467-470, 369-374.	0.3	3
114	Recrystallisation Resistance of Extruded and Cold Rolled Aluminium Alloys with Additions of Hf, Sc and Zr. Materials Science Forum, 2006, 519-521, 525-530.	0.3	3
115	Work- and Age-Hardening Behaviour of a Commercial AA7108 Aluminium Alloy. Materials Science Forum, 0, 618-619, 555-558.	0.3	3
116	Mobility Driven Abnormal Grain Growth in the Presence of Particles. Materials Science Forum, 0, 715-716, 930-935.	0.3	3
117	Modelling the Recrystallization Behaviour during Industrial Processing of Aluminium Alloys. Materials Science Forum, 2012, 715-716, 543-548.	0.3	3
118	Twinnability of Al–Mg alloys: A first-principles interpretation. Transactions of Nonferrous Metals Society of China, 2017, 27, 1313-1318.	1.7	3
119	Determination of symmetry elements from selected area channeling patterns. Ultramicroscopy, 1985, 17, 178.	0.8	2
120	Many-parameter refinements from CBED pattern. Micron and Microscopica Acta, 1992, 23, 137-138.	0.2	2
121	Modelling the Evolution of Microstructure and Properties during Deformation of Aluminium. Materials Science Forum, 2002, 396-402, 315-326.	0.3	2
122	Improved tight-binding parametrization for the simulation of stacking faults in aluminum. Physical Review B, 2003, 68, .	1.1	2
123	Modelling the Softening Behaviour of Commercial AlMn-Alloys. Materials Science Forum, 2004, 467-470, 677-682.	0.3	2
124	Modelling the Work Hardening Behaviour of AlMgMn Alloys. Materials Science Forum, 0, 638-642, 285-290.	0.3	2
125	Modelling Time-Dependent Nucleation of Recrystallization in Aluminium Alloys. Materials Science Forum, 2013, 753, 147-152.	0.3	2
126	The influence of microchemistry on the recrystallization texture of cold-rolled Al-Mn-Fe-Si alloys. IOP Conference Series: Materials Science and Engineering, 2015, 82, 012035.	0.3	2

#	Article	IF	CITATIONS
127	Three-phase structure invariants and structure factors determined with the quantitative convergent-beam electron diffraction method. Acta Crystallographica Section A: Foundations and Advances, 1999, 55, 188-196.	0.3	1
128	Solute and Second Phase Evolution during Industrial Processing of AA3103. Materials Science Forum, 2007, 539-543, 281-286.	0.3	1
129	Computer Simulations of Kinetics and Texture of Recrystallisation by a 3-D Potts Monte Carlo Model. Materials Science Forum, 2007, 558-559, 1069-1074.	0.3	1
130	Development of Aluminium Alloys with Ultimate Recrystallisation Resistance. Materials Science Forum, 2007, 539-543, 167-172.	0.3	1
131	Matrix Coherency Strain and Hardening of Al-Mg-Si. Materials Science Forum, 0, 638-642, 229-234.	0.3	1
132	3D Crystal Plasticity Modelling of Complex Microstructures in Extruded Products. , 2011, , .		1
133	Combined Effect of Deformation and Precipitation on Tensile Properties of an Al-Mg-Si Alloy. Materials Science Forum, 0, 706-709, 351-356.	0.3	1
134	Effect of simultaneous deformation and artificial ageing on the mechanical properties of an Al–Mg–Si alloy. International Journal of Materials Research, 2012, 103, 962-971.	0.1	1
135	Recovery Kinetics in High Purity and Commercial Purity Aluminium Alloys. Materials Science Forum, 2013, 753, 235-238.	0.3	1
136	Recrystallization behaviour of AA6063 extrusions. IOP Conference Series: Materials Science and Engineering, 2015, 89, 012057.	0.3	1
137	The Effect of Small Additions of Fe and Heavy Deformation on the Precipitation in an Al–1.1Mg–0.5Cu–0.3Si At. Pct Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 3296-3310.	1.1	1
138	Interpretation of electron channeling patterns from non-centrosymmetric crystals. Ultramicroscopy, 1988, 24, 72-73.	0.8	0
139	Deformation and Recrystallization Behaviour of a Homogenised and a Heterogenised Al-Mg-Si Alloy. Materials Science Forum, 2006, 519-521, 1611-1616.	0.3	0
140	On the Validation of the Monte Carlo Technique in Simulation of Grain Growth in Small, Two-Dimensional Systems. Materials Science Forum, 2007, 558-559, 1087-1092.	0.3	0
141	On the Recrystallization Kinetics of 3D Potts Monte Carlo Simulations. Materials Science Forum, 2012, 715-716, 959-964.	0.3	0
142	Hardening of Al-Mg-Si Alloys and Effective Particle Size in Microstructural Models. Materials Science Forum, 0, 783-786, 252-257.	0.3	0
143	Orientation Dependent Subgrain Growth During Isothermal Annealing of High-Purity Aluminum. , 2012, , 1713-1718.		Ο
144	Modeling of Work-Hardening in an Age-Hardenable AA7108 Aluminum Alloy. , 2012, , 1785-1790.		0

Modeling of Work-Hardening in an Age-Hardenable AA7108 Aluminum Alloy. , 2012, , 1785-1790. 144

#	Article	IF	CITATIONS
145	Numerical Modeling of Oxy-Fuel and Air-Fuel Burners for Aluminium Melting. , 2012, , 1037-1042.		0
146	Multiple plasmon scattering contributions to CBED contrast. Proceedings Annual Meeting Electron Microscopy Society of America, 1995, 53, 132-133.	0.0	0