James M Ball

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8009329/publications.pdf

Version: 2024-02-01

25 papers 7,866 citations

430874 18 h-index 713466 21 g-index

25 all docs

25 docs citations

25 times ranked

9920 citing authors

#	Article	IF	CITATIONS
1	Anomalous Hysteresis in Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 1511-1515.	4.6	2,190
2	Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy and Environmental Science, $2013, 6, 1739$.	30.8	1,509
3	Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States. Physical Review Applied, 2014, 2, .	3.8	1,005
4	The Raman Spectrum of the CH ₃ NH ₃ PbI ₃ Hybrid Perovskite: Interplay of Theory and Experiment. Journal of Physical Chemistry Letters, 2014, 5, 279-284.	4.6	555
5	A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science, 2020, 369, 96-102.	12.6	461
6	Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy and Environmental Science, 2015, 8, 602-609.	30.8	417
7	Controlling competing photochemical reactions stabilizes perovskite solar cells. Nature Photonics, 2019, 13, 532-539.	31.4	273
8	Revealing Charge Carrier Mobility and Defect Densities in Metal Halide Perovskites via Space-Charge-Limited Current Measurements. ACS Energy Letters, 2021, 6, 1087-1094.	17.4	254
9	Mapping Electric Fieldâ€Induced Switchable Poling and Structural Degradation in Hybrid Lead Halide Perovskite Thin Films. Advanced Energy Materials, 2015, 5, 1500962.	19.5	225
10	Toward Understanding Space-Charge Limited Current Measurements on Metal Halide Perovskites. ACS Energy Letters, 2020, 5, 376-384.	17.4	211
11	Plasmonicâ€Induced Photon Recycling in Metal Halide Perovskite Solar Cells. Advanced Functional Materials, 2015, 25, 5038-5046.	14.9	198
12	Ion Migration and the Role of Preconditioning Cycles in the Stabilization of the <i>J</i> – <i>V</i> Characteristics of Inverted Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1501453.	19.5	167
13	Elucidating the long-range charge carrier mobility in metal halide perovskite thin films. Energy and Environmental Science, 2019, 12, 169-176.	30.8	115
14	Metal composition influences optoelectronic quality in mixed-metal lead–tin triiodide perovskite solar absorbers. Energy and Environmental Science, 2020, 13, 1776-1787.	30.8	87
15	A panchromatic anthracene-fused porphyrin sensitizer for dye-sensitized solar cells. RSC Advances, 2012, 2, 6846.	3.6	59
16	Dual-Source Coevaporation of Low-Bandgap FA _{1–<i>x</i>} Pb _{<i>y</i>} I _{3- Perovskites for Photovoltaics. ACS Energy Letters, 2019, 4, 2748-2756.}	<b E119>	43
17	Solvent-Free Method for Defect Reduction and Improved Performance of p-i-n Vapor-Deposited Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 1903-1911.	17.4	33
18	Light Absorption and Recycling in Hybrid Metal Halide Perovskite Photovoltaic Devices. Advanced Energy Materials, 2020, 10, 1903653.	19.5	28

#	Article	IF	CITATIONS
19	Visualizing Macroscopic Inhomogeneities in Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 2311-2322.	17.4	20
20	Time-Dependent Field Effect in Three-Dimensional Lead-Halide Perovskite Semiconductor Thin Films. ACS Applied Energy Materials, 2021, 4, 10603-10609.	5.1	9
21	Lowâ€Cost Dopantâ€Free Carbazole Enamine Holeâ€Transporting Materials for Thermally Stable Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	7
22	A Dimethylammonium-Induced Intermediate Phase Approach Towards Stable Formamidinium-Caesium-based Perovskite Solar Cells. , 0, , .		0
23	Defect Activity in Lead Halide Perovskites. , 0, , .		0
24	Solution-Processed All-Perovskite Multi-Junction Solar Cells. , 0, , .		0
25	Improving n-i-p Perovskite Solar Cells Stability through Transport Layers. , 0, , .		0