
Pragati A Shinde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8009200/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review on Recent Progress in the Development of Tungsten Oxide Based Electrodes for Electrochemical Energy Storage. ChemSusChem, 2020, 13, 11-38.	6.8	121
2	Temperature dependent surface morphological modifications of hexagonal WO3 thin films for high performance supercapacitor application. Electrochimica Acta, 2017, 224, 397-404.	5.2	102
3	Flexible Asymmetric Solid-State Supercapacitors by Highly Efficient 3D Nanostructured α-MnO ₂ and h-CuS Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 16636-16649.	8.0	74
4	Layered manganese metal-organic framework with high specific and areal capacitance for hybrid supercapacitors. Chemical Engineering Journal, 2020, 387, 122982.	12.7	74
5	Direct growth of WO3 nanostructures on multi-walled carbon nanotubes for high-performance flexible all-solid-state asymmetric supercapacitor. Electrochimica Acta, 2019, 308, 231-242.	5.2	63
6	Two-dimensional MXenes for electrochemical energy storage applications. Journal of Materials Chemistry A, 2022, 10, 1105-1149.	10.3	63
7	Facile synthesis of self-assembled WO3 nanorods for high-performance electrochemical capacitor. Journal of Alloys and Compounds, 2019, 770, 1130-1137.	5.5	61
8	Single-step hydrothermal synthesis of WO3-MnO2 composite as an active material for all-solid-state flexible asymmetric supercapacitor. International Journal of Hydrogen Energy, 2018, 43, 2869-2880.	7.1	60
9	Facile synthesis of hierarchical mesoporous weirds-like morphological MnO2 thin films on carbon cloth for high performance supercapacitor application. Journal of Colloid and Interface Science, 2017, 498, 202-209.	9.4	58
10	High Performance All-Solid-State Asymmetric Supercapacitor Device Based on 3D Nanospheres of β-MnO ₂ and Nanoflowers of O-SnS. ACS Sustainable Chemistry and Engineering, 2018, 6, 787-802.	6.7	53
11	All-redox solid-state supercapacitor with cobalt manganese oxide@bimetallic hydroxides and vanadium nitride@nitrogen-doped carbon electrodes. Chemical Engineering Journal, 2021, 405, 127029.	12.7	49
12	All Transition Metal Selenide Composed Highâ€Energy Solidâ€State Hybrid Supercapacitor. Small, 2022, 18, e2200248.	10.0	49
13	Enhanced electrochemical performance of monoclinic WO 3 thin film with redox additive aqueous electrolyte. Journal of Colloid and Interface Science, 2016, 483, 261-267.	9.4	48
14	Self-assembled bimetallic cobalt–manganese metal–organic framework as a highly efficient, robust electrode for asymmetric supercapacitors. Electrochimica Acta, 2020, 335, 135327.	5.2	46
15	Metal–organic-framework-derived hierarchical Co/CoP-decorated nanoporous carbon polyhedra for robust high-energy storage hybrid supercapacitors. Dalton Transactions, 2020, 49, 1157-1166.	3.3	42
16	Potentiodynamic polarization assisted phosphorus-containing amorphous trimetal hydroxide nanofibers for highly efficient hybrid supercapacitors. Journal of Materials Chemistry A, 2020, 8, 5721-5733.	10.3	38
17	High energy storage quasi-solid-state supercapacitor enabled by metal chalcogenide nanowires and iron-based nitrogen-doped graphene nanostructures. Journal of Colloid and Interface Science, 2022, 608, 711-719.	9.4	31
18	Solution-free self-assembled growth of ordered tricopper phosphide for efficient and stable hybrid supercapacitor. Energy Storage Materials, 2021, 39, 194-202.	18.0	30

Pragati A Shinde

#	Article	IF	CITATIONS
19	Two-dimensional electronic devices modulated by the activation of donor-like states in boron nitride. Nanoscale, 2020, 12, 18171-18179.	5.6	28
20	Nitridation-induced in situ coupling of Ni-Co4N particles in nitrogen-doped carbon nanosheets for hybrid supercapacitors. Chemical Engineering Journal, 2022, 428, 131888.	12.7	28
21	High performance complementary WS ₂ devices with hybrid Gr/Ni contacts. Nanoscale, 2020, 12, 21280-21290.	5.6	27
22	Fabrication of high performance flexible all-solid-state asymmetric supercapacitors with a three dimensional disc-like WO ₃ /stainless steel electrode. RSC Advances, 2016, 6, 113442-113451.	3.6	26
23	Nitrogen-doped carbon integrated nickel–cobalt metal phosphide marigold flowers as a high capacity electrode for hybrid supercapacitors. CrystEngComm, 2020, 22, 6360-6370.	2.6	23
24	A systematic approach to achieve high energy density hybrid supercapacitors based on Ni–Co–Fe hydroxide. Electrochimica Acta, 2020, 353, 136578.	5.2	22
25	Hierarchically designed 3D Cu3N@Ni3N porous nanorod arrays: An efficient and robust electrode for high-energy solid-state hybrid supercapacitors. Applied Materials Today, 2021, 22, 100951.	4.3	15
26	Multi-heterostructured spin-valve junction of vertical FLG/MoSe2/FLG. APL Materials, 2020, 8, .	5.1	11
27	Metal Organic Frameworks (MOFs) for Supercapacitor. , 2021, , 414-414.		4