
Ehab A El-Danaf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8009127/publications.pdf Version: 2024-02-01

FHAR A FL-DANAE

#	Article	IF	CITATIONS
1	Experimental and Numerical Study of Texture Evolution and Anisotropic Plastic Deformation of Pure Magnesium under Various Strain Paths. Advances in Materials Science and Engineering, 2018, 2018, 1-12.	1.0	4
2	High temperature deformation behavior of as-produced and retired 9–12% Cr power plant steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 697, 203-210.	2.6	8
3	Optimizing Cutting Conditions and Prediction of Surface Roughness in Face Milling of AZ61 Using Regression Analysis and Artificial Neural Network. Advances in Materials Science and Engineering, 2017, 2017, 1-8.	1.0	13
4	Precipitation Hardening and Statistical Modeling of the Aging Parameters and Alloy Compositions in Al-Cu-Mg-Ag Alloys. Journal of Materials Engineering and Performance, 2016, 25, 2432-2444.	1.2	15
5	Transition from Superplastic Behavior - Viscous Clide - Dislocation Climb - Power-Law Break down Regimes in Friction Stir Processed AA5083. Materials Science Forum, 2016, 863, 23-30.	0.3	0
6	A Study on the Synergistic Effect of ECAP and Aging Treatment on the Mechanical Properties of AA6082. Journal of Materials Engineering and Performance, 2016, 25, 5252-5261.	1.2	3
7	Quasi and Dynamic Compression of ECAP Processed AA 6082. , 2016, , 175-179.		0
8	Correlation of Grain Size, Stacking Fault Energy, and Texture in Cu-Al Alloys Deformed under Simulated Rolling Conditions. Advances in Materials Science and Engineering, 2015, 2015, 1-12.	1.0	8
9	Enhanced Fatigue Strength of Commercially Pure Ti Processed by Rotary Swaging. Advances in Materials Science and Engineering, 2015, 2015, 1-12.	1.0	22
10	Characterization and correlation of mechanical, microstructural and ultrasonic properties of power plant steel. Materials Characterization, 2015, 100, 120-134.	1.9	13
11	Microstructure, Mechanical, and Fatigue Strength of Ti-54M Processed by Rotary Swaging. Journal of Materials Engineering and Performance, 2015, 24, 2074-2084.	1.2	12
12	Effect of Nd:YAG laser parameters on the penetration depth of a representative Ni–Cr dental casting alloy. Lasers in Medical Science, 2015, 30, 909-914.	1.0	6
13	Ultrasonic characterization of heat-treatment effects on SAE-1040 and -4340 steels. Journal of Materials Processing Technology, 2015, 216, 188-198.	3.1	11
14	Mechanical properties, microstructure and toughness assessment of a X70 pipeline steel. Materialpruefung/Materials Testing, 2015, 57, 897-903.	0.8	5
15	The fracture strength of cryomilled 99.7 Al nanopowders consolidated by high frequency induction sintering. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012025.	0.3	0
16	Nanocrystalline 6061 Al Powder Fabricated by Cryogenic Milling and Consolidated via High Frequency Induction Heat Sintering. Advances in Materials Science and Engineering, 2014, 2014, 1-9.	1.0	5
17	Thermo-mechanical responses of an aluminum alloy processed by equal channel angular pressing. Materials & Design, 2014, 57, 510-519.	5.1	10
18	Mechanical properties and microstructure evolution in an aluminum 6082 alloy processed by high-pressure torsion. Journal of Materials Science, 2014, 49, 6597-6607.	1.7	18

Ehab A El-Danaf

#	Article	IF	CITATIONS
19	Mechanical, microstructure and texture characterization of API X65 steel. Materials & Design, 2013, 47, 529-538.	5.1	41
20	Microstructure and mechanical properties of friction stir welded 6082 AA in as welded and post weld heat treated conditions. Materials & Design, 2013, 46, 561-572.	5.1	89
21	Severe plastic deformation of commercial purity aluminum by rotary swaging: Microstructure evolution and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 565, 351-358.	2.6	68
22	High temperature deformation characteristics of equal channel angular pressed AA6082-T6. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 565, 301-307.	2.6	8
23	Shear bond strength and characterization of interfaces between electroformed gold substrates and porcelain. Materials Chemistry and Physics, 2013, 137, 825-833.	2.0	3
24	Mechanical Characterization of Cryomilled Al Powder Consolidated by High-Frequency Induction Heat Sintering. Advances in Materials Science and Engineering, 2013, 2013, 1-10.	1.0	4
25	Effect of Equal-Channel Angular Pressing Process on Properties of 1050 Al Alloy. Materials and Manufacturing Processes, 2012, 27, 746-750.	2.7	35
26	Mechanical properties, microstructure and micro-texture evolution for 1050AA deformed by equal channel angular pressing (ECAP) and post ECAP plane strain compression using two loading schemes. Materials & Design, 2012, 34, 793-807.	5.1	25
27	Effect of equal-channel angular pressing on superplastic behavior of eutectic Pb–Sn alloy. Materials & Design, 2012, 34, 235-241.	5.1	9
28	Creep characteristics and microstructure in nano-particle strengthened AA6082. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 531, 35-44.	2.6	19
29	Enhancement of static and fatigue strength of 1050 Al processed by equal-channel angular pressing using two routes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 532, 120-129.	2.6	21
30	The influence of multi-pass friction stir processing on the microstructural and mechanical properties of Aluminum Alloy 6082. Journal of Materials Processing Technology, 2012, 212, 1157-1168.	3.1	232
31	Low temperature enhanced ductility of friction stir processed 5083 aluminum alloy. Bulletin of Materials Science, 2011, 34, 1447-1453.	0.8	10
32	EBSD investigation of the microstructure and microtexture evolution of 1050 aluminum cross deformed from ECAP to plane strain compression. Journal of Materials Science, 2011, 46, 3291-3308.	1.7	19
33	Role of stacking fault energy on the deformation characteristics of copper alloys processed by plane strain compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7579-7588.	2.6	22
34	High-temperature deformation and enhanced ductility of friction stir processed-7010 Aluminum Alloy. Materials & Design, 2011, 32, 1916-1922.	5.1	9
35	Mechanical properties, microstructure and texture of single pass equal channel angular pressed 1050, 5083, 6082 and 7010 aluminum alloys with different dies. Materials & Design, 2011, 32, 3838-3853.	5.1	67
36	Effect of deformation path change on plastic response and texture evolution for 1050 Al pre-deformed by ECAP and subsequently plane strain compressed. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2547-2558.	2.6	13

EHAB A EL-DANAF

#	Article	IF	CITATIONS
37	Friction stir processing: An effective technique to refine grain structure and enhance ductility. Materials & Design, 2010, 31, 1231-1236.	5.1	100
38	Static and Cyclic Deformation of Commercially Pure Al Processed by Equal-Channel Angular Pressing Using Two Routes. Materials Science Forum, 2010, 667-669, 833-838.	0.3	1
39	Texture Manipulation in Commercial Purity Aluminum by Deformation Path Change from ECAP to Plane Strain Compression. Materials Science Forum, 2010, 667-669, 445-450.	0.3	Ο
40	Effect of combining plane-strain compression with equal channel angular pressing on mechanical properties and texture development in an Al alloy. Journal of Materials Science, 2009, 44, 5654-5661.	1.7	10
41	Effect of Solution Heat Treatment on the Hot Workability of Al–Mg–Si Alloy. Materials and Manufacturing Processes, 2009, 24, 637-643.	2.7	15
42	Hot deformation of AA6082-T4 aluminum alloy. Journal of Materials Science, 2008, 43, 6324-6330.	1.7	33
43	High-Temperature Deformation and Ductility of a Modified 5083 Al Alloy. Journal of Materials Engineering and Performance, 2008, 17, 572-579.	1.2	16
44	Mechanical properties and microstructure evolution of 1050 aluminum severely deformed by ECAP to 16 passes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 487, 189-200.	2.6	96
45	Texture evolution and fraction of favorably oriented fibers in commercially pure aluminum processed to 16 ECAP passes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 492, 141-152.	2.6	24
46	Texture During ECAP and Post ECAP Simple Compression of Commercial Purity 1050 Aluminum Alloy. , 2008, , .		3
47	Enhancement of mechanical properties and grain size refinement of commercial purity aluminum 1050 processed by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 458, 226-234.	2.6	179
48	Equivalent twinning criteria for FCC alloys under uniaxial tension at high temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 457, 373-379.	2.6	27
49	A criterion for shear banding localization in polycrystalline FCC metals and alloys and critical working conditions for different microstructural variables. Journal of Materials Processing Technology, 2007, 186, 14-21.	3.1	19
50	Study of Bauschinger Effect by Reverse Shearing of 70:30 Brass. Journal of King Saud University, Engineering Sciences, 2006, 19, 83-93.	1.2	0
51	Evolution of grain-scale microstructure during large strain simple compression of polycrystalline aluminum with quasi-columnar grains: OIM measurements and numerical simulations. International Journal of Plasticity, 2001, 17, 861-883.	4.1	116
52	Influence of deformation path on the strain hardening behavior and microstructure evolution in low SFE FCC metals. International Journal of Plasticity, 2001, 17, 1245-1265.	4.1	83
53	Deformation texture transition in brass: critical role of micro-scale shear bands. Acta Materialia, 2000, 48, 2665-2673.	3.8	132
54	Evolution of Grain-Scale Microstructure during Large Strain Simple Compression of Polycrystalline Aluminium. Key Engineering Materials, 2000, 177-180, 183-188.	0.4	1

EHAB A EL-DANAF

#	Article	IF	CITATIONS
55	Influence of grain size and stacking-fault energy on deformation twinning in fcc metals. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 1223-1233.	1.1	418
56	The secondary hardening phenomenon in strain-hardened MP35N alloy. Acta Materialia, 1998, 46, 5795-5806.	3.8	50
57	Accurate characterization of machine compliance for simple compression testing. Experimental Mechanics, 1997, 37, 210-215.	1.1	134
58	Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy fcc alloys that form deformation twins. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997, 28, 1781-1795.	1.1	393
59	Effect of Heat Treatment Conditions on the High Temperature Deformation of 6082-Al Alloy. Advanced Materials Research, 0, 83-86, 407-414.	0.3	3
60	Different Stress States Deformation of AA6082 Subjected to Different Artificially Aged Conditions. Advanced Materials Research, 0, 83-86, 421-428.	0.3	0
61	Microstructural and Mechanical Characterization of Friction Stir Welded- 1050 Aluminium Alloy. Advanced Materials Research, 0, 83-86, 1173-1181.	0.3	0
62	Microstructural and Mechanical Characterization of Artificially-Aged Power Plant Steel. Materials Science Forum, 0, 863, 31-39.	0.3	0