Christoph Bueschl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8009080/publications.pdf

Version: 2024-02-01

331259 360668 1,392 36 21 35 citations h-index g-index papers 39 39 39 1802 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	GCâ \in "MS based targeted metabolic profiling identifies changes in the wheat metabolome following deoxynivalenol treatment. Metabolomics, 2015, 11, 722-738.	1.4	117
2	Stable isotopic labelling-assisted untargeted metabolic profiling reveals novel conjugates of the mycotoxin deoxynivalenol in wheat. Analytical and Bioanalytical Chemistry, 2013, 405, 5031-5036.	1.9	102
3	Biotransformation of the Mycotoxin Deoxynivalenol in Fusarium Resistant and Susceptible Near Isogenic Wheat Lines. PLoS ONE, 2015, 10, e0119656.	1.1	93
4	Transcription factor Xpp1 is a switch between primary and secondary fungal metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E560-E569.	3.3	86
5	A novel stable isotope labelling assisted workflow for improved untargeted LC–HRMS based metabolomics research. Metabolomics, 2014, 10, 754-769.	1.4	84
6	MetExtract II: A Software Suite for Stable Isotope-Assisted Untargeted Metabolomics. Analytical Chemistry, 2017, 89, 9518-9526.	3.2	80
7	Metabolism of the Fusarium Mycotoxins T-2 Toxin and HT-2 Toxin in Wheat. Journal of Agricultural and Food Chemistry, 2015, 63, 7862-7872.	2.4	78
8	Methanol Generates Numerous Artifacts during Sample Extraction and Storage of Extracts in Metabolomics Research. Metabolites, 2018, 8, 1.	1.3	73
9	MetExtract: a new software tool for the automated comprehensive extraction of metabolite-derived LC/MS signals in metabolomics research. Bioinformatics, 2012, 28, 736-738.	1.8	68
10	Stable Isotope-Assisted Evaluation of Different Extraction Solvents for Untargeted Metabolomics of Plants. International Journal of Molecular Sciences, 2016, 17, 1017.	1.8	64
11	Tracing the metabolism of HT-2 toxin and T-2 toxin in barley by isotope-assisted untargeted screening and quantitative LC-HRMS analysis. Analytical and Bioanalytical Chemistry, 2015, 407, 8019-8033.	1.9	56
12	Untargeted Profiling of Tracer-Derived Metabolites Using Stable Isotopic Labeling and Fast Polarity-Switching LC–ESI-HRMS. Analytical Chemistry, 2014, 86, 11533-11537.	3.2	52
13	Joint Transcriptomic and Metabolomic Analyses Reveal Changes in the Primary Metabolism and Imbalances in the Subgenome Orchestration in the Bread Wheat Molecular Response to <i>Fusarium graminearum</i> . G3: Genes, Genomes, Genetics, 2015, 5, 2579-2592.	0.8	45
14	<i>Trichoderma</i> spp. volatile organic compounds protect grapevine plants by activating defenseâ€related processes against downy mildew. Physiologia Plantarum, 2021, 172, 1950-1965.	2.6	42
15	Downy mildew symptoms on grapevines can be reduced by volatile organic compounds of resistant genotypes. Scientific Reports, 2018, 8, 1618.	1.6	38
16	Stable Isotope-Assisted Plant Metabolomics: Investigation of Phenylalanine-Related Metabolic Response in Wheat Upon Treatment With the Fusarium Virulence Factor Deoxynivalenol. Frontiers in Plant Science, 2019, 10, 1137.	1.7	35
17	Metabolism of HT-2 Toxin and T-2 Toxin in Oats. Toxins, 2016, 8, 364.	1.5	31
18	The Profile and Dynamics of RNA Modifications in Animals. ChemBioChem, 2017, 18, 979-984.	1.3	30

#	Article	IF	Citations
19	Stable Isotope-Assisted Metabolomics for Deciphering Xenobiotic Metabolism in Mammalian Cell Culture. ACS Chemical Biology, 2020, 15, 970-981.	1.6	25
20	Tracing flavonoid degradation in grapes by MS filtering with stable isotopes. Food Chemistry, 2015, 166, 448-455.	4.2	23
21	Stable Isotope–Assisted Plant Metabolomics: Combination of Global and Tracer-Based Labeling for Enhanced Untargeted Profiling and Compound Annotation. Frontiers in Plant Science, 2019, 10, 1366.	1.7	23
22	Untargeted LC–MS based 13C labelling provides a full mass balance of deoxynivalenol and its degradation products formed during baking of crackers, biscuits and bread. Food Chemistry, 2019, 279, 303-311.	4.2	23
23	Automated LC-HRMS(/MS) Approach for the Annotation of Fragment lons Derived from Stable Isotope Labeling-Assisted Untargeted Metabolomics. Analytical Chemistry, 2014, 86, 7320-7327.	3.2	22
24	Tracing oxidation reaction pathways in wine using 13C isotopolog patterns and a putative compound database. Analytica Chimica Acta, 2019, 1054, 74-83.	2.6	17
25	QCScreen: a software tool for data quality control in LC-HRMS based metabolomics. BMC Bioinformatics, 2015, 16, 341.	1.2	16
26	Preparation of uniformly labelled 13C- and 15N-plants using customised growth chambers. Plant Methods, 2020, 16, 46.	1.9	13
27	MetMatch: A Semi-Automated Software Tool for the Comparison and Alignment of LC-HRMS Data from Different Metabolomics Experiments. Metabolites, 2016, 6, 39.	1.3	12
28	PeakBot: machine-learning-based chromatographic peak picking. Bioinformatics, 2022, 38, 3422-3428.	1.8	10
29	Elucidation of xenoestrogen metabolism by non-targeted, stable isotope-assisted mass spectrometry in breast cancer cells. Environment International, 2022, 158, 106940.	4.8	9
30	Partially 13C-labeled mouse tissue as reference for LC-MS based untargeted metabolomics. Analytical Biochemistry, 2018, 556, 63-69.	1.1	6
31	Volatiles from the Mandibular Gland Reservoir Content of Colobopsis explodens Laciny and Zettel, 2018, Worker Ants (Hymenoptera: Formicidae). Molecules, 2019, 24, 3468.	1.7	5
32	Enhanced Metabolome Coverage and Evaluation of Matrix Effects by the Use of Experimental-Condition-Matched 13C-Labeled Biological Samples in Isotope-Assisted LC-HRMS Metabolomics. Metabolites, 2020, 10, 434.	1.3	4
33	A novel method combining stable isotopic labeling and high-resolution mass spectrometry to trace the quinone reaction products in wines. Food Chemistry, 2022, 383, 132448.	4.2	4
34	CPExtract, a Software Tool for the Automated Tracer-Based Pathway Specific Screening of Secondary Metabolites in LC-HRMS Data. Analytical Chemistry, 2022, 94, 3543-3552.	3.2	4
35	Towards a broader view of the metabolome: untargeted profiling of soluble and bound polyphenols in plants. Analytical and Bioanalytical Chemistry, 2022, 414, 7421-7433.	1.9	2
36	The Comprehensive and Reliable Detection of Secondary Metabolites in Trichoderma reesei: A Tool for the Discovery of Novel Substances. Methods in Molecular Biology, 2021, 2234, 271-295.	0.4	0

3