Lothar Reichel

List of Publications by Citations

Source: https://exaly.com/author-pdf/8008935/lothar-reichel-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

255 papers

4,467 citations

33 h-index 55 g-index

272 ext. papers

5,135 ext. citations

1.9 avg, IF

5.96 L-index

#	Paper	IF	Citations
255	Tikhonov regularization and the L-curve for large discrete ill-posed problems. <i>Journal of Computational and Applied Mathematics</i> , 2000 , 123, 423-446	2.4	300
254	Krylov-subspace methods for the Sylvester equation. <i>Linear Algebra and Its Applications</i> , 1992 , 172, 283	-36163	140
253	Augmented Implicitly Restarted Lanczos Bidiagonalization Methods. <i>SIAM Journal of Scientific Computing</i> , 2005 , 27, 19-42	2.6	138
252	Application of ADI Iterative Methods to the Restoration of Noisy Images. <i>SIAM Journal on Matrix Analysis and Applications</i> , 1996 , 17, 165-186	1.5	125
251	Old and new parameter choice rules for discrete ill-posed problems. <i>Numerical Algorithms</i> , 2013 , 63, 65-87	2.1	116
250	Eigenvalues and pseudo-eigenvalues of Toeplitz matrices. <i>Linear Algebra and Its Applications</i> , 1992 , 162-164, 153-185	0.9	112
249	A Hybrid GMRES Algorithm for Nonsymmetric Linear Systems. <i>SIAM Journal on Matrix Analysis and Applications</i> , 1992 , 13, 796-825	1.5	98
248	Error Estimates and Evaluation of Matrix Functions via the Faber Transform. <i>SIAM Journal on Numerical Analysis</i> , 2009 , 47, 3849-3883	2.4	95
247	Tridiagonal Toeplitz matrices: properties and novel applications. <i>Numerical Linear Algebra With Applications</i> , 2013 , 20, 302-326	1.6	94
246	Tikhonov Regularization of Large Linear Problems. BIT Numerical Mathematics, 2003, 43, 263-283	1.7	91
245	Adaptively Preconditioned GMRES Algorithms. SIAM Journal of Scientific Computing, 1998, 20, 243-269	2.6	77
244	Estimation of the L-Curve via Lanczos Bidiagonalization. <i>BIT Numerical Mathematics</i> , 1999 , 39, 603-619	1.7	73
243	Newton interpolation at Leja points. <i>BIT Numerical Mathematics</i> , 1990 , 30, 332-346	1.7	72
242	On the regularizing properties of the GMRES method. <i>Numerische Mathematik</i> , 2002 , 91, 605-625	2.2	67
241	Computation of Gauss-Kronrod quadrature rules. <i>Mathematics of Computation</i> , 2000 , 69, 1035-1053	1.6	65
240	A Newton basis GMRES implementation. <i>IMA Journal of Numerical Analysis</i> , 1994 , 14, 563-581	1.8	59
239	A divide and conquer method for unitary and orthogonal eigenproblems. <i>Numerische Mathematik</i> , 1990 , 57, 695-718	2.2	53

238	A new Tikhonov regularization method. <i>Numerical Algorithms</i> , 2012 , 59, 433-445	2.1	52
237	GMRES-type methods for inconsistent systems. <i>Linear Algebra and Its Applications</i> , 2000 , 316, 157-169	0.9	51
236	Fractional Tikhonov regularization for linear discrete ill-posed problems. <i>BIT Numerical Mathematics</i> , 2011 , 51, 197-215	1.7	50
235	GMRES, L-Curves, and Discrete Ill-Posed Problems. <i>BIT Numerical Mathematics</i> , 2002 , 42, 44-65	1.7	48
234	Discrete least squares approximation by trigonometric polynomials. <i>Mathematics of Computation</i> , 1991 , 57, 273-273	1.6	46
233	IRBL: An Implicitly Restarted Block-Lanczos Method for Large-Scale Hermitian Eigenproblems. <i>SIAM Journal of Scientific Computing</i> , 2003 , 24, 1650-1677	2.6	45
232	Breakdown-free GMRES for Singular Systems. <i>SIAM Journal on Matrix Analysis and Applications</i> , 2005 , 26, 1001-1021	1.5	43
231	Tikhonov regularization based on generalized Krylov subspace methods. <i>Applied Numerical Mathematics</i> , 2012 , 62, 1215-1228	2.5	41
230	L-Curve and Curvature Bounds for Tikhonov Regularization. <i>Numerical Algorithms</i> , 2004 , 35, 301-314	2.1	40
229	A new L-curve for ill-posed problems. <i>Journal of Computational and Applied Mathematics</i> , 2008 , 219, 493	3- <u>5</u> .48	39
229	A new L-curve for ill-posed problems. <i>Journal of Computational and Applied Mathematics</i> , 2008 , 219, 493. Iterative methods for the computation of a few eigenvalues of a large symmetric matrix. <i>BIT Numerical Mathematics</i> , 1996 , 36, 400-421	3- <u>5</u> .08	39
	Iterative methods for the computation of a few eigenvalues of a large symmetric matrix. <i>BIT</i>		
228	Iterative methods for the computation of a few eigenvalues of a large symmetric matrix. <i>BIT Numerical Mathematics</i> , 1996 , 36, 400-421 ArnoldiTikhonov regularization methods. <i>Journal of Computational and Applied Mathematics</i> , 2009 ,	1.7	38
228	Iterative methods for the computation of a few eigenvalues of a large symmetric matrix. <i>BIT Numerical Mathematics</i> , 1996 , 36, 400-421 ArnoldiTikhonov regularization methods. <i>Journal of Computational and Applied Mathematics</i> , 2009 , 226, 92-102 Invertible smoothing preconditioners for linear discrete ill-posed problems. <i>Applied Numerical</i>	1.7 2.4	38
228 227 226	Iterative methods for the computation of a few eigenvalues of a large symmetric matrix. <i>BIT Numerical Mathematics</i> , 1996 , 36, 400-421 ArnoldiTikhonov regularization methods. <i>Journal of Computational and Applied Mathematics</i> , 2009 , 226, 92-102 Invertible smoothing preconditioners for linear discrete ill-posed problems. <i>Applied Numerical Mathematics</i> , 2005 , 54, 135-149	1.7 2.4 2.5	38 37 36
228 227 226 225	Iterative methods for the computation of a few eigenvalues of a large symmetric matrix. <i>BIT Numerical Mathematics</i> , 1996 , 36, 400-421 Arnoldillikhonov regularization methods. <i>Journal of Computational and Applied Mathematics</i> , 2009 , 226, 92-102 Invertible smoothing preconditioners for linear discrete ill-posed problems. <i>Applied Numerical Mathematics</i> , 2005 , 54, 135-149 Chebyshev-Vandermonde systems. <i>Mathematics of Computation</i> , 1991 , 57, 703-703 A fast method for solving certain integral equations of the first kind with application to conformal	1.7 2.4 2.5	38 37 36 36
228 227 226 225 224	Iterative methods for the computation of a few eigenvalues of a large symmetric matrix. <i>BIT Numerical Mathematics</i> , 1996 , 36, 400-421 Arnoldillikhonov regularization methods. <i>Journal of Computational and Applied Mathematics</i> , 2009 , 226, 92-102 Invertible smoothing preconditioners for linear discrete ill-posed problems. <i>Applied Numerical Mathematics</i> , 2005 , 54, 135-149 Chebyshev-Vandermonde systems. <i>Mathematics of Computation</i> , 1991 , 57, 703-703 A fast method for solving certain integral equations of the first kind with application to conformal mapping. <i>Journal of Computational and Applied Mathematics</i> , 1986 , 14, 125-142	1.7 2.4 2.5 1.6	38 37 36 36

220	A Generalized Krylov Subspace Method for \$ell_p\$-\$ell_q\$ Minimization. <i>SIAM Journal of Scientific Computing</i> , 2015 , 37, S30-S50	2.6	30	
219	Block Gauss and Anti-Gauss Quadrature with Application to Networks. <i>SIAM Journal on Matrix Analysis and Applications</i> , 2013 , 34, 1655-1684	1.5	29	
218	A generalized ADI iterative method. <i>Numerische Mathematik</i> , 1993 , 66, 215-233	2.2	28	
217	Algorithm 686: FORTRAN subroutines for updating the QR decomposition. <i>ACM Transactions on Mathematical Software</i> , 1990 , 16, 369-377	2.3	28	
216	Regularization parameter determination for discrete ill-posed problems. <i>Journal of Computational and Applied Mathematics</i> , 2015 , 273, 132-149	2.4	27	
215	Large-scale Tikhonov regularization via reduction by orthogonal projection. <i>Linear Algebra and Its Applications</i> , 2012 , 436, 2845-2865	0.9	27	
214	Tikhonov Regularization with a Solution Constraint. SIAM Journal of Scientific Computing, 2004, 26, 224	-236	27	
213	A new zero-finder for Tikhonov regularization. <i>BIT Numerical Mathematics</i> , 2008 , 48, 627-643	1.7	26	
212	Square regularization matrices for large linear discrete ill-posed problems. <i>Numerical Linear Algebra With Applications</i> , 2012 , 19, 896-913	1.6	25	
211	A fast minimal residual algorithm for shifted unitary matrices. <i>Numerical Linear Algebra With Applications</i> , 1994 , 1, 555-570	1.6	25	
210	Fast QR Decomposition of Vandermonde-Like Mmatrices and Polynomial Least Squares Approximation. <i>SIAM Journal on Matrix Analysis and Applications</i> , 1991 , 12, 552-564	1.5	25	
209	Network Analysis via Partial Spectral Factorization and Gauss Quadrature. <i>SIAM Journal of Scientific Computing</i> , 2013 , 35, A2046-A2068	2.6	24	
208	Error estimates for large-scale ill-posed problems. <i>Numerical Algorithms</i> , 2009 , 51, 341-361	2.1	24	
207	The extended Krylov subspace method and orthogonal Laurent polynomials. <i>Linear Algebra and Its Applications</i> , 2009 , 431, 441-458	0.9	24	
206	Recursion relations for the extended Krylov subspace method. <i>Linear Algebra and Its Applications</i> , 2011 , 434, 1716-1732	0.9	24	
205	GCV for Tikhonov regularization by partial SVD. BIT Numerical Mathematics, 2017, 57, 1019-1039	1.7	23	
204	On the solution of large Sylvester-observer equations. <i>Numerical Linear Algebra With Applications</i> , 2001 , 8, 435-451	1.6	23	
203	Modulus-based iterative methods for constrained Tikhonov regularization. <i>Journal of Computational and Applied Mathematics</i> , 2017 , 319, 1-13	2.4	22	

(2012-2007)

202	A truncated projected SVD method for linear discrete ill-posed problems. <i>Numerical Algorithms</i> , 2007 , 43, 197-213	2.1	22
201	Orthogonal projection regularization operators. <i>Numerical Algorithms</i> , 2007 , 44, 99-114	2.1	22
200	Iterative methods for ill-posed problems and semiconvergent sequences. <i>Journal of Computational and Applied Mathematics</i> , 2006 , 193, 157-167	2.4	22
199	Algorithm 827. ACM Transactions on Mathematical Software, 2003, 29, 337-348	2.3	22
198	An implementation of a divide and conquer algorithm for the unitary eigen problem. <i>ACM Transactions on Mathematical Software</i> , 1992 , 18, 292-307	2.3	22
197	An adaptive Chebyshev iterative methodnewline for nonsymmetric linear systems based on modified moments. <i>Numerische Mathematik</i> , 1994 , 67, 21-40	2.2	21
196	Newton Interpolation in Fejer and Chebyshev Points. <i>Mathematics of Computation</i> , 1989 , 53, 265	1.6	21
195	GCV for Tikhonov regularization via global Golub K ahan decomposition. <i>Numerical Linear Algebra With Applications</i> , 2016 , 23, 467-484	1.6	21
194	MajorizationEhinimization generalized Krylov subspace methods for ({ell _p})[[ell _q}) optimization applied to image restoration. <i>BIT Numerical Mathematics</i> , 2017 , 57, 351-378	1.7	20
193	Iterated Tikhonov regularization with a general penalty term. <i>Numerical Linear Algebra With Applications</i> , 2017 , 24, e2089	1.6	20
192	Simplified GSVD computations for the solution of linear discrete ill-posed problems. <i>Journal of Computational and Applied Mathematics</i> , 2014 , 255, 15-27	2.4	20
191	Algorithms for range restricted iterative methods for linear discrete ill-posed problems. <i>Numerical Algorithms</i> , 2012 , 59, 325-331	2.1	20
190	An extrapolated TSVD method for linear discrete ill-posed problems with Kronecker structure. <i>Linear Algebra and Its Applications</i> , 2011 , 434, 1677-1688	0.9	20
189	Incomplete partial fractions for parallel evaluation of rational matrix functions. <i>Journal of Computational and Applied Mathematics</i> , 1995 , 59, 349-380	2.4	20
188	Decomposition methods for large linear discrete ill-posed problems. <i>Journal of Computational and Applied Mathematics</i> , 2007 , 198, 332-343	2.4	19
187	Gram Polynomials and the Kummer Function. <i>Journal of Approximation Theory</i> , 1998 , 94, 128-143	0.9	18
186	Square smoothing regularization matrices with accurate boundary conditions. <i>Journal of Computational and Applied Mathematics</i> , 2014 , 272, 334-349	2.4	17
185	On the generation of Krylov subspace bases. <i>Applied Numerical Mathematics</i> , 2012 , 62, 1171-1186	2.5	17

184	Matrices, moments, and rational quadrature. <i>Linear Algebra and Its Applications</i> , 2008 , 429, 2540-2554	0.9	17
183	Constructing a Unitary Hessenberg Matrix from Spectral Data 1991 , 385-395		17
182	Fractional Tikhonov regularization with a nonlinear penalty term. <i>Journal of Computational and Applied Mathematics</i> , 2017 , 324, 142-154	2.4	16
181	Bounding matrix functionals via partial global block Lanczos decomposition. <i>Applied Numerical Mathematics</i> , 2015 , 94, 127-139	2.5	16
180	Parameter determination for Tikhonov regularization problems in general form. <i>Journal of Computational and Applied Mathematics</i> , 2018 , 343, 12-25	2.4	16
179	Regularization matrices determined by matrix nearness problems. <i>Linear Algebra and Its Applications</i> , 2016 , 502, 41-57	0.9	15
178	Discrete ill-posed least-squares problems with a solution norm constraint. <i>Linear Algebra and Its Applications</i> , 2012 , 436, 3801-3818	0.9	15
177	Cascadic Multiresolution Methods for Image Deblurring. SIAM Journal on Imaging Sciences, 2008, 1, 51-7	74 1.9	15
176	Augmented GMRES-type methods. Numerical Linear Algebra With Applications, 2007, 14, 337-350	1.6	15
175	Szeg l lobatto quadrature rules. <i>Journal of Computational and Applied Mathematics</i> , 2007 , 200, 116-126	2.4	15
174	A global Lanczos method for image restoration. <i>Journal of Computational and Applied Mathematics</i> , 2016 , 300, 233-244	2.4	14
173	Inverse problems for regularization matrices. <i>Numerical Algorithms</i> , 2012 , 60, 531-544	2.1	14
172	Cascadic multilevel methods for ill-posed problems. <i>Journal of Computational and Applied Mathematics</i> , 2010 , 233, 1314-1325	2.4	14
171	A regularizing Lanczos iteration method for underdetermined linear systems. <i>Journal of Computational and Applied Mathematics</i> , 2000 , 115, 101-120	2.4	14
170	Solution methods for linear discrete ill-posed problems for color image restoration. <i>BIT Numerical Mathematics</i> , 2018 , 58, 555-576	1.7	13
169	Generalized averaged Gauss quadrature rules for the approximation of matrix functionals. <i>BIT Numerical Mathematics</i> , 2016 , 56, 1045-1067	1.7	13
168	Computation of a Few Small Eigenvalues of a Large Matrix with Application to Liquid Crystal Modeling. <i>Journal of Computational Physics</i> , 1998 , 146, 203-226	4.1	13
167	An iterative method for linear discrete ill-posed problems with box constraints. <i>Journal of Computational and Applied Mathematics</i> , 2007 , 198, 505-520	2.4	13

166	An (ell ^2-ell ^q) Regularization Method for Large Discrete Ill-Posed Problems. <i>Journal of Scientific Computing</i> , 2019 , 78, 1526-1549	2.3	13
165	Rescaling the GSVD with application to ill-posed problems. <i>Numerical Algorithms</i> , 2015 , 68, 531-545	2.1	12
164	Fractional regularization matrices for linear discrete ill-posed problems. <i>Journal of Engineering Mathematics</i> , 2015 , 93, 113-129	1.2	12
163	Iterative Tikhonov regularization of tensor equations based on the Arnoldi process and some of its generalizations. <i>Applied Numerical Mathematics</i> , 2020 , 151, 425-447	2.5	12
162	A modified truncated singular value decomposition method for discrete ill-posed problems. <i>Numerical Linear Algebra With Applications</i> , 2014 , 21, 813-822	1.6	12
161	Quadrature Rules Based on the Arnoldi Process. SIAM Journal on Matrix Analysis and Applications, 2005 , 26, 765-781	1.5	12
160	Lanczos-Based Exponential Filtering for Discrete Ill-Posed Problems. <i>Numerical Algorithms</i> , 2002 , 29, 45-65	2.1	12
159	Symmetric Gauss Lobatto and Modified Anti-Gauss Rules. BIT Numerical Mathematics, 2003, 43, 541-554	1.7	12
158	Enriched Krylov subspace methods for ill-posed problems. <i>Linear Algebra and Its Applications</i> , 2003 , 362, 257-273	0.9	12
157	Computable error bounds and estimates for the conjugate gradient method. <i>Numerical Algorithms</i> , 2000 , 25, 75-88	2.1	12
156	Iterative exponential filtering for large discrete ill-posed problems. <i>Numerische Mathematik</i> , 1999 , 83, 535-556	2.2	12
155	Analysis of directed networks via the matrix exponential. <i>Journal of Computational and Applied Mathematics</i> , 2019 , 355, 182-192	2.4	11
154	Arnoldi methods for image deblurring with anti-reflective boundary conditions. <i>Applied Mathematics and Computation</i> , 2015 , 253, 135-150	2.7	11
153	Wavelet-based multilevel methods for linear ill-posed problems. <i>BIT Numerical Mathematics</i> , 2011 , 51, 669-694	1.7	11
152	The structured distance to normality of banded Toeplitz matrices. <i>BIT Numerical Mathematics</i> , 2009 , 49, 629-640	1.7	11
151	A generalized LSQR algorithm. Numerical Linear Algebra With Applications, 2008, 15, 643-660	1.6	11
150	On the Evaluation of Polynomial Coefficients. <i>Numerical Algorithms</i> , 2003 , 33, 153-161	2.1	11
149	Continuation methods for the computation of zeros of Szeg[polynomials. <i>Linear Algebra and Its Applications</i> , 1996 , 249, 125-155	0.9	11

148	An adaptive Richardson iteration method for indefinite linear systems. <i>Numerical Algorithms</i> , 1996 , 12, 125-149	2.1	11
147	On polynomial approximation in the complex plane with application to conformal mapping. <i>Mathematics of Computation</i> , 1985 , 44, 425-425	1.6	11
146	On the computation of a truncated SVD of a large linear discrete ill-posed problem. <i>Numerical Algorithms</i> , 2017 , 75, 359-380	2.1	10
145	Iterative Solution Methods for Large Linear Discrete Ill-Posed Problems 1999 , 313-367		10
144	Construction of polynomials that are orthogonal with respect to a discrete bilinear form. <i>Advances in Computational Mathematics</i> , 1993 , 1, 241-258	1.6	10
143	Numerical methods for analytic continuation and mesh generation. <i>Constructive Approximation</i> , 1986 , 2, 23-39	1.6	10
142	Generalized singular value decomposition with iterated Tikhonov regularization. <i>Journal of Computational and Applied Mathematics</i> , 2020 , 373, 112276	2.4	10
141	Golub K ahan bidiagonalization for ill-conditioned tensor equations with applications. <i>Numerical Algorithms</i> , 2020 , 84, 1535-1563	2.1	9
140	Some matrix nearness problems suggested by Tikhonov regularization. <i>Linear Algebra and Its Applications</i> , 2016 , 502, 366-386	0.9	9
139	Application of denoising methods to regularizationof ill-posed problems. <i>Numerical Algorithms</i> , 2014 , 66, 761-777	2.1	9
138	FGMRES for linear discrete ill-posed problems. Applied Numerical Mathematics, 2014, 75, 175-187	2.5	9
137	The structure of matrices in rational Gauss quadrature. <i>Mathematics of Computation</i> , 2013 , 82, 2035-20	60 .6	9
136	The structured distance to normality of Toeplitz matrices with application to preconditioning. <i>Numerical Linear Algebra With Applications</i> , 2011 , 18, 429-447	1.6	9
135	Vector extrapolation enhanced TSVD for linear discrete ill-posed problems. <i>Numerical Algorithms</i> , 2009 , 51, 195-208	2.1	9
134	Polynomial zerofinders based on Szeg[polynomials. <i>Journal of Computational and Applied Mathematics</i> , 2001 , 127, 1-16	2.4	9
133	An iterative method with error estimators. <i>Journal of Computational and Applied Mathematics</i> , 2001 , 127, 93-119	2.4	9
132	On the determination of boundary collocation points for solving some problems for the Laplace operator. <i>Journal of Computational and Applied Mathematics</i> , 1984 , 11, 175-196	2.4	9
131	New block quadrature rules for the approximation of matrix functions. <i>Linear Algebra and Its Applications</i> , 2016 , 502, 299-326	0.9	8

130	Global Golub R ahan bidiagonalization applied to large discrete ill-posed problems. <i>Journal of Computational and Applied Mathematics</i> , 2017 , 322, 46-56	2.4	8
129	A Golub Kahan-Type Reduction Method for Matrix Pairs. Journal of Scientific Computing, 2015, 65, 767-7	8 9 .3	8
128	An 🏿- 🐧 minimization method with cross-validation for the restoration of impulse noise contaminated images. <i>Journal of Computational and Applied Mathematics</i> , 2020 , 375, 112824	2.4	8
127	Simplified anti-Gauss quadrature rules with applications in linear algebra. <i>Numerical Algorithms</i> , 2018 , 77, 577-602	2.1	8
126	Projected nonstationary iterated Tikhonov regularization. <i>BIT Numerical Mathematics</i> , 2016 , 56, 467-48	71.7	8
125	On the choice of subspace for large-scale Tikhonov regularization problems in general form. <i>Numerical Algorithms</i> , 2019 , 81, 33-55	2.1	8
124	Analysis of directed networks via partial singular value decomposition and Gauss quadrature. <i>Linear Algebra and Its Applications</i> , 2014 , 456, 93-121	0.9	8
123	An augmented LSQR method. <i>Numerical Algorithms</i> , 2013 , 64, 263-293	2.1	8
122	A generalized global Arnoldi method for ill-posed matrix equations. <i>Journal of Computational and Applied Mathematics</i> , 2012 , 236, 2078-2089	2.4	8
121	Cascadic multilevel methods for fast nonsymmetric blur- and noise-removal. <i>Applied Numerical Mathematics</i> , 2010 , 60, 378-396	2.5	8
120	Noise-reducing cascadic multilevel methods for linear discrete ill-posed problems. <i>Numerical Algorithms</i> , 2010 , 53, 1-22	2.1	8
119	The Arnoldi Process and GMRES for Nearly Symmetric Matrices. <i>SIAM Journal on Matrix Analysis and Applications</i> , 2008 , 30, 102-120	1.5	8
118	Greedy Tikhonov regularization for large linear ill-posed problems. <i>International Journal of Computer Mathematics</i> , 2007 , 84, 1151-1166	1.2	8
117	An iterative Lavrentiev regularization method. <i>BIT Numerical Mathematics</i> , 2006 , 46, 589-606	1.7	8
116	On the construction of Szeg[polynomials. <i>Journal of Computational and Applied Mathematics</i> , 1993 , 46, 241-254	2.4	8
115	On polynomial approximation in the uniform norm by the discrete least squares method. <i>BIT Numerical Mathematics</i> , 1986 , 26, 349-368	1.7	8
114	A method for preconditioning matrices arising from linear integral equations for elliptic boundary value problems. <i>Computing (Vienna/New York)</i> , 1986 , 37, 125-136	2.2	8
113	Polynomials by Conformal Mapping for the Richardson Iteration Method for Complex Linear Systems. <i>SIAM Journal on Numerical Analysis</i> , 1988 , 25, 1359-1368	2.4	8

112	Applications of Anti-Gauss Quadrature Rules in Linear Algebra 1999 , 41-56		8
111	Arnoldi decomposition, GMRES, and preconditioning for linear discrete ill-posed problems. <i>Applied Numerical Mathematics</i> , 2019 , 142, 102-121	2.5	7
110	Tikhonov regularization via flexible Arnoldi reduction. <i>BIT Numerical Mathematics</i> , 2015 , 55, 1145-1168	1.7	7
109	Truncated generalized averaged Gauss quadrature rules. <i>Journal of Computational and Applied Mathematics</i> , 2016 , 308, 408-418	2.4	7
108	Rational Gauss Quadrature. SIAM Journal on Numerical Analysis, 2014, 52, 832-851	2.4	7
107	On the reduction of Tikhonov minimization problems and the construction of regularization matrices. <i>Numerical Algorithms</i> , 2012 , 60, 683-696	2.1	7
106	An L-ribbon for large underdetermined linear discrete ill-posed problems. <i>Numerical Algorithms</i> , 2000 , 25, 89-107	2.1	7
105	An analogue for Szeg[polynomials of the Clenshaw algorithm. <i>Journal of Computational and Applied Mathematics</i> , 1993 , 46, 211-216	2.4	7
104	Regularization matrices for discrete ill-posed problems in several space dimensions. <i>Numerical Linear Algebra With Applications</i> , 2018 , 25, e2163	1.6	6
103	On the Lanczos and GolubKahan reduction methods applied to discrete ill-posed problems. <i>Numerical Linear Algebra With Applications</i> , 2016 , 23, 187-204	1.6	6
102	A new framework for multi-parameter regularization. BIT Numerical Mathematics, 2016, 56, 919-949	1.7	6
101	Internality of generalized averaged Gaussian quadrature rules and truncated variants for modified Chebyshev measures of the second kind. <i>Journal of Computational and Applied Mathematics</i> , 2019 , 345, 70-85	2.4	6
100	Generalized averaged Szeglquadrature rules. <i>Journal of Computational and Applied Mathematics</i> , 2017 , 311, 645-654	2.4	6
99	Alternating Krylov subspace image restoration methods. <i>Journal of Computational and Applied Mathematics</i> , 2012 , 236, 2049-2062	2.4	6
98	Recurrence relations for orthogonal rational functions. <i>Numerische Mathematik</i> , 2013 , 123, 629-642	2.2	6
97	Subspace-restricted singular value decompositions for linear discrete ill-posed problems. <i>Journal of Computational and Applied Mathematics</i> , 2010 , 235, 1053-1064	2.4	6
96	An interior-point method for large constrained discrete ill-posed problems. <i>Journal of Computational and Applied Mathematics</i> , 2010 , 233, 1288-1297	2.4	6
95	The restarted QR-algorithm for eigenvalue computation of structured matrices. <i>Journal of Computational and Applied Mathematics</i> , 2002 , 149, 415-422	2.4	6

(2016-1999)

94	On the selection of poles in the single-input pole placement problem. <i>Linear Algebra and Its Applications</i> , 1999 , 302-303, 331-345	0.9	6
93	Determination Of Pisarenko Frequency Estimates As Eigenvalues Of An Orthogonal Matrix 1988,		6
92	The extended global Lanczos method for matrix function approximation. <i>Electronic Transactions on Numerical Analysis</i> ,50, 144-163		6
91	Modulus-based iterative methods for constrained Ф щ minimization. <i>Inverse Problems</i> , 2020 , 36, 08400	12.3	6
90	Eigenvector sensitivity under general and structured perturbations of tridiagonal Toeplitz-type matrices. <i>Numerical Linear Algebra With Applications</i> , 2019 , 26, e2232	1.6	5
89	Generalized anti-Gauss quadrature rules. <i>Journal of Computational and Applied Mathematics</i> , 2015 , 284, 235-243	2.4	5
88	Adaptive cross approximation for ill-posed problems. <i>Journal of Computational and Applied Mathematics</i> , 2016 , 303, 206-217	2.4	5
87	Numerical aspects of the nonstationary modified linearized Bregman algorithm. <i>Applied Mathematics and Computation</i> , 2018 , 337, 386-398	2.7	5
86	Generalized circulant Strang-type preconditioners. <i>Numerical Linear Algebra With Applications</i> , 2012 , 19, 3-17	1.6	5
85	Extensions of the JustenRamlau blind deconvolution method. <i>Advances in Computational Mathematics</i> , 2013 , 39, 465-491	1.6	5
84	Image Denoising via Residual Kurtosis Minimization. <i>Numerical Mathematics</i> , 2015 , 8, 406-424	1.5	5
83	Fast computation of convolution operations via low-rank approximation. <i>Applied Numerical Mathematics</i> , 2014 , 75, 136-153	2.5	5
82	A hybrid multilevel-active set method for large box-constrained linear discrete ill-posed problems. <i>Calcolo</i> , 2011 , 48, 89-105	1.5	5
81	Application of a block modified Chebyshev algorithm to the iterative solution of symmetric linear systems with multiple right hand side vectors. <i>Numerische Mathematik</i> , 1994 , 68, 3-16	2.2	5
80	Internality of generalized averaged Gaussian quadrature rules and truncated variants for measures induced by Chebyshev polynomials. <i>Applied Numerical Mathematics</i> , 2019 , 142, 190-205	2.5	4
79	Vector extrapolation applied to truncated singular value decomposition and truncated iteration. <i>Journal of Engineering Mathematics</i> , 2015 , 93, 99-112	1.2	4
78	A rational Arnoldi process with applications. Numerical Linear Algebra With Applications, 2016, 23, 1007	-110622	4
77	On the choice of solution subspace for nonstationary iterated Tikhonov regularization. <i>Numerical Algorithms</i> , 2016 , 72, 1043-1063	2.1	4

76	Generalized block anti-Gauss quadrature rules. <i>Numerische Mathematik</i> , 2019 , 143, 605-648	2.2	4
75	The structure of iterative methods for symmetric linear discrete ill-posed problems. <i>BIT Numerical Mathematics</i> , 2014 , 54, 129-145	1.7	4
74	Projected Tikhonov Regularization of Large-Scale Discrete Ill-Posed Problems. <i>Journal of Scientific Computing</i> , 2013 , 56, 471-493	2.3	4
73	Circulant preconditioners for discrete ill-posed Toeplitz systems. <i>Numerical Algorithms</i> , 2017 , 75, 477-4	9 <u>0</u> .1	4
72	Some properties of range restricted GMRES methods. <i>Journal of Computational and Applied Mathematics</i> , 2015 , 290, 310-318	2.4	4
71	An implicitly restarted block Lanczos bidiagonalization method using Leja shifts. <i>BIT Numerical Mathematics</i> , 2012 , 53, 285	1.7	4
70	Combining approximate solutions for linear discrete ill-posed problems. <i>Journal of Computational and Applied Mathematics</i> , 2012 , 236, 2179-2185	2.4	4
69	Anti-Szego quadrature rules. <i>Mathematics of Computation</i> , 2006 , 76, 795-810	1.6	4
68	Gauss Quadrature Applied to Trust Region Computations. <i>Numerical Algorithms</i> , 2003 , 34, 85-102	2.1	4
67	A hybrid iterative method for symmetric positive definite linear systems. <i>Numerical Algorithms</i> , 1996 , 11, 79-98	2.1	4
66	On the numerical solution of some 2-D electromagnetic interface problems by the boundary collocation method. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1985 , 53, 1-11	5.7	4
65	Large-scale regression with non-convex loss and penalty. <i>Applied Numerical Mathematics</i> , 2020 , 157, 590-601	2.5	4
64	A spectral method for bipartizing a network and detecting a large anti-community. <i>Journal of Computational and Applied Mathematics</i> , 2020 , 373, 112306	2.4	4
63	Edge importance in a network via line graphs and the matrix exponential. <i>Numerical Algorithms</i> , 2020 , 83, 807-832	2.1	4
62	Error estimates for Arnoldillikhonov regularization for ill-posed operator equations. <i>Inverse Problems</i> , 2019 , 35, 055002	2.3	3
61	Minimization of functionals on the solution of a large-scale discrete ill-posed problem. <i>BIT Numerical Mathematics</i> , 2013 , 53, 153-173	1.7	3
60	Approximated structured pseudospectra. Numerical Linear Algebra With Applications, 2017, 24, e2082	1.6	3
59	Inverse subspace problems with applications. <i>Numerical Linear Algebra With Applications</i> , 2014 , 21, 589	-6:03	3

58	On an inverse eigenproblem for Jacobi matrices. Advances in Computational Mathematics, 1999 , 11, 11	-20 .6	3
57	An asymptotically orthonormal polynomial family. BIT Numerical Mathematics, 1984, 24, 647-655	1.7	3
56	The extended global Lanczos method, GaussRadau quadrature, and matrix function approximation. <i>Journal of Computational and Applied Mathematics</i> , 2021 , 381, 113027	2.4	3
55	Lanczos-based fast blind deconvolution methods. <i>Journal of Computational and Applied Mathematics</i> , 2021 , 382, 113067	2.4	3
54	Computing unstructured and structured polynomial pseudospectrum approximations. <i>Journal of Computational and Applied Mathematics</i> , 2019 , 350, 57-68	2.4	2
53	On the computation of Gauss quadrature rules for measures with a monomial denominator. <i>Journal of Computational and Applied Mathematics</i> , 2015 , 286, 102-113	2.4	2
52	Simple efficient solvers for certain ill-conditioned systems of linear equations, including H(div) problems. <i>Journal of Computational and Applied Mathematics</i> , 2018 , 343, 240-249	2.4	2
51	A note on superoptimal generalized circulant preconditioners. <i>Applied Numerical Mathematics</i> , 2014 , 75, 188-195	2.5	2
50	A hybrid iterative method for symmetric indefinite linear systems. <i>Journal of Computational and Applied Mathematics</i> , 1998 , 92, 109-133	2.4	2
49	Tikhonov regularization of large symmetric problems. <i>Numerical Linear Algebra With Applications</i> , 2005 , 12, 127-139	1.6	2
48	A block-Lanczos method for large continuation problems. <i>Numerical Algorithms</i> , 1999 , 21, 109-118	2.1	2
47	The tensor GolubKahanIIikhonov method applied to the solution of ill-posed problems with a t-product structure. <i>Numerical Linear Algebra With Applications</i> ,e2412	1.6	2
46	Generalized cross validation for 🖟-🖟 minimization. <i>Numerical Algorithms</i> ,1	2.1	2
45	Convergence rates for inverse-free rational approximation of matrix functions. <i>Linear Algebra and Its Applications</i> , 2016 , 510, 291-310	0.9	2
44	Optimally Conditioned Vandermonde-Like Matrices. <i>SIAM Journal on Matrix Analysis and Applications</i> , 2019 , 40, 1399-1424	1.5	2
43	Comparison of A-posteriori parameter choice rules for linear discrete ill-posed problems. <i>Journal of Computational and Applied Mathematics</i> , 2020 , 373, 112138	2.4	2
42	A novel modified TRSVD method for large-scale linear discrete ill-posed problems. <i>Applied Numerical Mathematics</i> , 2021 , 164, 72-88	2.5	2
41	Linearized Krylov subspace Bregman iteration with nonnegativity constraint. <i>Numerical Algorithms</i> , 2021 , 87, 1177-1200	2.1	2

40	A new representation of generalized averaged Gauss quadrature rules. <i>Applied Numerical Mathematics</i> , 2021 , 165, 614-619	2.5	2
39	Tensor Krylov subspace methods with an invertible linear transform product applied to image processing. <i>Applied Numerical Mathematics</i> , 2021 , 166, 186-207	2.5	2
38	Block matrix models for dynamic networks. Applied Mathematics and Computation, 2021, 402, 126121	2.7	2
37	Centrality measures for node-weighted networks via line graphs and the matrix exponential. <i>Numerical Algorithms</i> , 2021 , 88, 583-614	2.1	2
36	A CS decomposition for orthogonal matrices with application to eigenvalue computation. <i>Linear Algebra and Its Applications</i> , 2015 , 476, 197-232	0.9	1
35	Lavrentiev-type regularization methods for Hermitian problems. <i>Calcolo</i> , 2015 , 52, 187-205	1.5	1
34	Simple stopping criteria for the LSQR method applied to discrete ill-posed problems. <i>Numerical Algorithms</i> , 2020 , 84, 1381-1395	2.1	1
33	Multiple orthogonal polynomials applied to matrix function evaluation. <i>BIT Numerical Mathematics</i> , 2018 , 58, 835-849	1.7	1
32	Fast factorization of rectangular Vandermonde matrices with Chebyshev nodes. <i>Numerical Algorithms</i> , 2019 , 81, 547-559	2.1	1
31	Sensitivity analysis for Szeg[polynomials. <i>Numerische Mathematik</i> , 2009 , 113, 265-279	2.2	1
30	Edge waves by boundary collocation. Journal of Computational and Applied Mathematics, 1986, 15, 59-7	32.4	1
29	A Cascadic Alternating Krylov Subspace Image Restoration Method. <i>Lecture Notes in Computer Science</i> , 2013 , 98-109	0.9	1
28	Chained graphs and some applications. Applied Network Science, 2021, 6,	2.9	1
27	On the choice of regularization matrix for an <code>Q-li</code> minimization method for image restoration. <i>Applied Numerical Mathematics</i> , 2021 , 164, 211-221	2.5	1
26	On the block Lanczos and block Golubkahan reduction methods applied to discrete ill-posed problems. <i>Numerical Linear Algebra With Applications</i> , 2021 , 28, e2376	1.6	1
25	Estimating the error in matrix function approximations. <i>Advances in Computational Mathematics</i> , 2021 , 47, 1	1.6	1
24	New matrix function approximations and quadrature rules based on the Arnoldi process. <i>Journal of Computational and Applied Mathematics</i> , 2021 , 391, 113442	2.4	1
23	Variable selection in saturated and supersaturated designs via - minimization. <i>Communications in Statistics Part B: Simulation and Computation</i> ,1-22	0.6	1

(2020-2021)

22	Chebyshev measures of the first kind. <i>Journal of Computational and Applied Mathematics</i> , 2021 , 398, 113696	2.4	1
21	Tensor Arnoldilikhonov and GMRES-Type Methods for Ill-Posed Problems with a t-Product Structure. <i>Journal of Scientific Computing</i> , 2022 , 90, 1	2.3	1
20	Rational gauss quadrature rules for the approximation of matrix functionals involving stieltjes functions. <i>Numerische Mathematik</i> , 2022 , 151, 443-473	2.2	1
19	Estimating and increasing the structural robustness of a network. <i>Numerical Linear Algebra With Applications</i> ,e2418	1.6	O
18	Communication in complex networks. <i>Applied Numerical Mathematics</i> , 2022 , 172, 186-205	2.5	O
17	Iterative Methods for the Computation of the Perron Vector of Adjacency Matrices. <i>Mathematics</i> , 2021 , 9, 1522	2.3	O
16	A new nonstationary preconditioned iterative method for linear discrete ill-posed problems with application to image deblurring. <i>Numerical Linear Algebra With Applications</i> , 2021 , 28, e2353	1.6	O
15	Shifted extended global Lanczos processes for trace estimation with application to network analysis. <i>Calcolo</i> , 2021 , 58, 1	1.5	O
14	Golub K ahan vs. Monte Carlo: a comparison of bidiagonlization and a randomized SVD method for the solution of linear discrete ill-posed problems. <i>BIT Numerical Mathematics</i> , 2021 , 61, 1093	1.7	O
13	Averaged Gauss quadrature formulas: Properties and applications. <i>Journal of Computational and Applied Mathematics</i> , 2022 , 410, 114232	2.4	O
12	New zero-finders for trust-region computations. <i>Numerical Algorithms</i> , 2017 , 76, 361-375	2.1	
11	A novel iterative method for discrete Helmholtz decomposition. <i>Applied Numerical Mathematics</i> , 2020 , 151, 161-171	2.5	
10	Accuracy optimization of combined multiparameter measuring systems with application to polarized light microscopy. <i>Physical Review E</i> , 2018 , 97, 063305	2.4	
9	The extended symmetric block Lanczos method for matrix-valued Gauss-type quadrature rules. Journal of Computational and Applied Mathematics, 2022, 407, 114037	2.4	
8	Non-stationary Structure-Preserving Preconditioning for Image Restoration. <i>Springer INdAM Series</i> , 2019 , 51-75	0.4	
7	Rational averaged gauss quadrature rules. <i>Filomat</i> , 2020 , 34, 379-389	0.7	
6	A General Framework for Nonlinear Regularized Krylov-Based Image Restoration. <i>Lecture Notes in Computer Science</i> , 2014 , 273-279	0.9	
5	Orthogonal Expansion of Network Functions. <i>Vietnam Journal of Mathematics</i> , 2020 , 48, 941-962	0.5	

4	Gausslaurent-type quadrature rules for the approximation of functionals of a nonsymmetric matrix. <i>Numerical Algorithms</i> , 2021 , 88, 1937	2.1
3	Functions and eigenvectors of partially known matrices with applications to network analysis. <i>Applied Numerical Mathematics</i> , 2021 , 159, 93-105	2.5
2	New models for multi-class networks. <i>Journal of Computational and Applied Mathematics</i> , 2021 , 394, 113567	2.4
1	Computation of error bounds via generalized GaussRadau and GaussIlobatto rules. <i>Journal of Computational and Applied Mathematics</i> , 2021 , 396, 113604	2.4