Wei-Bin Bai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8008750/publications.pdf

Version: 2024-02-01

147801 243625 2,438 78 31 44 h-index citations g-index papers 81 81 81 2444 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The consequence and mechanism of dietary flavonoids on androgen profiles and disorders amelioration. Critical Reviews in Food Science and Nutrition, 2023, 63, 11327-11350.	10.3	2
2	Anthocyanin supplement as a dietary strategy in cancer prevention and management: A comprehensive review. Critical Reviews in Food Science and Nutrition, 2022, 62, 7242-7254.	10.3	45
3	Pyruvic acid stress caused color attenuation by interfering with anthocyanins metabolism during alcoholic fermentation. Food Chemistry, 2022, 372, 131251.	8.2	10
4	A critical review on the health benefits of fish consumption and its bioactive constituents. Food Chemistry, 2022, 369, 130874.	8.2	85
5	A comprehensive review on innovative and advanced stabilization approaches of anthocyanin by modifying structure and controlling environmental factors. Food Chemistry, 2022, 366, 130611.	8.2	94
6	Fabrication and characterization of \hat{l}^2 -cyclodextrin-epichlorohydrin grafted carboxymethyl chitosan for improving the stability of Cyanidin-3-glucoside. Food Chemistry, 2022, 370, 130933.	8.2	9
7	Cyanidin-3-O-glucoside ameliorates cadmium induced uterine epithelium proliferation in mice. Journal of Hazardous Materials, 2022, 425, 127571.	12.4	9
8	Manuka honey in combination with 5-Fluorouracil decreases physical parameters of colonspheres enriched with cancer stem-like cells and reduces their resistance to apoptosis. Food Chemistry, 2022, 374, 131753.	8.2	9
9	Effects of Monascus application on in vitro digestion and fermentation characteristics of fish protein. Food Chemistry, 2022, 377, 132000.	8.2	10
10	Warangalone Induces Apoptosis in HeLa Cells via Mitochondria-Mediated Endogenous Pathway. EFood, 2022, 2, 259-270.	3.1	3
11	Protective effect of food derived nutrients on cisplatin nephrotoxicity and its mechanism. Food and Function, 2022, 13, 4839-4860.	4.6	5
12	Cyanidin-3-O-Glucoside Supplement Improves Sperm Quality and Spermatogenesis in a Mice Model of Ulcerative Colitis. Nutrients, 2022, 14, 984.	4.1	11
13	Structural Characterization and <i>In Vitro</i> Fermentation Characteristics of Enzymatically Extracted Black Mulberry Polysaccharides. Journal of Agricultural and Food Chemistry, 2022, 70, 3654-3665.	5.2	28
14	Isolation, Structural Properties, and Bioactivities of Polysaccharides from Mushrooms <i>Termitomyces</i> : A Review. Journal of Agricultural and Food Chemistry, 2022, 70, 21-33.	5.2	14
15	Effects of Bisphenol A on reproductive toxicity and gut microbiota dysbiosis in male rats. Ecotoxicology and Environmental Safety, 2022, 239, 113623.	6.0	20
16	Recent advances on bioactive polysaccharides from mulberry. Food and Function, 2021, 12, 5219-5235.	4.6	27
17	Chronic oral exposure to cadmium causes liver inflammation by NLRP3 inflammasome activation in pubertal mice. Food and Chemical Toxicology, 2021, 148, 111944.	3.6	41
18	Available technologies on improving the stability of polyphenols in food processing. Food Frontiers, 2021, 2, 109-139.	7.4	98

#	Article	IF	CITATIONS
19	Subacute safety assessment of recombinant <i>Lactococcus lactis</i> on the gut microbiota of male Sprague–Dawley rats. Journal of the Science of Food and Agriculture, 2021, 101, 5807-5812.	3.5	2
20	Protective effects of anthocyanins on neurodegenerative diseases. Trends in Food Science and Technology, 2021, 117, 205-217.	15.1	44
21	Dietary Fiber Modulates the Fermentation Patterns of Cyanidin-3-O-Glucoside in a Fiber-Type Dependent Manner. Foods, 2021, 10, 1386.	4.3	20
22	Baking of methionine-choline deficient diet aggravates testis injury in mice. Food and Chemical Toxicology, 2021, 154, 112245.	3.6	3
23	Using untargeted metabolomics to profile the changes in roselle (Hibiscus sabdariffa L.) anthocyanins during wine fermentation. Food Chemistry, 2021, 364, 130425.	8.2	32
24	Anthocyanins in Food., 2021,, 371-421.		0
25	Bioactive compounds from <i>Cudrania tricuspidata:</i> A natural anticancer source. Critical Reviews in Food Science and Nutrition, 2020, 60, 494-514.	10.3	25
26	Species identification and quantification of silver pomfret using the droplet digital PCR assay. Food Chemistry, 2020, 302, 125331.	8.2	21
27	Cyanidin-3-O-glucoside restores spermatogenic dysfunction in cadmium-exposed pubertal mice via histone ubiquitination and mitigating oxidative damage. Journal of Hazardous Materials, 2020, 387, 121706.	12.4	53
28	Protective effects of cyanidinâ€3â€ <i>O</i> à€glucoside on UVBâ€induced chronic skin photodamage in mice via alleviating oxidative damage and antiâ€inflammation. Food Frontiers, 2020, 1, 213-223.	7.4	18
29	Morin decreases acrolein-induced cell injury in normal human hepatocyte cell line LO2. Journal of Functional Foods, 2020, 75, 104234.	3.4	10
30	Synthesis, structural characterization, and evaluation of cyanidin-3-O-glucoside-loaded chitosan nanoparticles. Food Chemistry, 2020, 330, 127239.	8.2	21
31	The impact of ultrasonic treatment on blueberry wine anthocyanin color and its In-vitro anti-oxidant capacity. Food Chemistry, 2020, 333, 127455.	8.2	62
32	Comparative Study on the Stability and Antioxidant Activity of Six Pyranoanthocyanins Based on Malvidin-3-glucoside. Journal of Agricultural and Food Chemistry, 2020, 68, 2783-2794.	5.2	41
33	<i>Food Frontiers</i> : An academically sponsored new journal. Food Frontiers, 2020, 1, 3-5.	7.4	1
34	A novel label-free electrochemical aptasensor with one-step assembly process for rapid detection of lead (II) ions. Sensors and Actuators B: Chemical, 2020, 320, 128326.	7.8	35
35	Effects of Dietary Interventions on Gut Microbiota in Humans and the Possible Impacts of Foods on Patients' Responses to Cancer Immunotherapy. EFood, 2020, 1, 279-287.	3.1	28
36	Black Raspberries Suppress Colorectal Cancer by Enhancing Smad4 Expression in Colonic Epithelium and Natural Killer Cells. Frontiers in Immunology, 2020, 11, 570683.	4.8	12

#	Article	IF	CITATIONS
37	Qualitative and Quantitative Methods to Evaluate Anthocyanins. EFood, 2020, 1, 339-346.	3.1	21
38	The target cells of anthocyanins in metabolic syndrome. Critical Reviews in Food Science and Nutrition, 2019, 59, 921-946.	10.3	57
39	Nutritional constituents, health benefits and processing of Rosa Roxburghii: A review. Journal of Functional Foods, 2019, 60, 103456.	3.4	64
40	Effects of cyanidin-3-O-glucoside on 3-chloro-1,2-propanediol induced intestinal microbiota dysbiosis in rats. Food and Chemical Toxicology, 2019, 133, 110767.	3.6	50
41	Cyanidinâ€3â€oâ€glucoside inhibits UVAâ€induced human dermal fibroblast injury by upregulating autophagy. Photodermatology Photoimmunology and Photomedicine, 2019, 35, 360-368.	1.5	18
42	Low Dose of Cyanidin-3-O-Glucoside Alleviated Dextran Sulfate Sodium–Induced Colitis, Mediated by CD169+ Macrophage Pathway. Inflammatory Bowel Diseases, 2019, 25, 1510-1521.	1.9	23
43	Bioactive phytochemicals. Critical Reviews in Food Science and Nutrition, 2019, 59, 827-829.	10.3	54
44	Cyanidin-3-O-glucoside protects against cadmium-induced dysfunction of sex hormone secretion via the regulation of hypothalamus-pituitary-gonadal axis in male pubertal mice. Food and Chemical Toxicology, 2019, 129, 13-21.	3.6	41
45	Final-2 targeted glycolysis mediated apoptosis and autophagy in human lung adenocarcinoma cells but failed to inhibit xenograft in nude mice. Food and Chemical Toxicology, 2019, 130, 1-11.	3.6	8
46	Cyanidin-3-O-glucoside promotes progesterone secretion by improving cells viability and mitochondrial function in cadmium-sulfate-damaged R2C cells. Food and Chemical Toxicology, 2019, 128, 97-105.	3.6	22
47	Highly Sensitive Label-Free Electrochemical Aptasensor Based on Screen-Printed Electrode for Detection of Cadmium (II) Ions. Journal of the Electrochemical Society, 2019, 166, B449-B455.	2.9	43
48	Scandenolone from Cudrania tricuspidata fruit extract suppresses the viability of breast cancer cells (MCF-7) in vitro and in vivo. Food and Chemical Toxicology, 2019, 126, 56-66.	3.6	17
49	Metabolism of anthocyanins and consequent effects on the gut microbiota. Critical Reviews in Food Science and Nutrition, 2019, 59, 982-991.	10.3	135
50	Structure–Activity Relationship Analysis on Antioxidant and Anticancer Actions of Theaflavins on Human Colon Cancer Cells. Journal of Agricultural and Food Chemistry, 2019, 67, 159-170.	5.2	17
51	Effects of low power ultrasonic treatment on the transformation of cyanidin-3-O-glucoside to methylpyranocyanidin-3-O-glucoside and its stability evaluation. Food Chemistry, 2019, 276, 240-246.	8.2	34
52	Recent advances of medical foods in China: The opportunities and challenges under standardization. Food and Chemical Toxicology, 2018, 119, 342-354.	3.6	3
53	Dietary exposure to cadmium of Shenzhen adult residents from a total diet study. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 707-715.	2.3	17
54	The effect of Cyanidinâ€3â€oâ€glucoside on <scp>UVA</scp> â€induced damage in human dermal fibroblasts. Photodermatology Photoimmunology and Photomedicine, 2018, 34, 224-231.	1.5	16

#	Article	IF	Citations
55	Protection of cyanidin-3-O-glucoside against acrylamide- and glycidamide-induced reproductive toxicity in leydig cells. Food and Chemical Toxicology, 2018, 119, 268-274.	3.6	50
56	Cyanidin-3-O-glucoside promotes the biosynthesis of progesterone through the protection of mitochondrial function in Pb-exposed rat leydig cells. Food and Chemical Toxicology, 2018, 112, 427-434.	3.6	34
57	Cyanidin-3- <i>O</i> -glucoside at Low Doses Protected against 3-Chloro-1,2-propanediol Induced Testis Injury and Improved Spermatogenesis in Male Rats. Journal of Agricultural and Food Chemistry, 2018, 66, 12675-12684.	5.2	47
58	6-Gingerol Regulates Hepatic Cholesterol Metabolism by Up-regulation of LDLR and Cholesterol Efflux-Related Genes in HepG2 Cells. Frontiers in Pharmacology, 2018, 9, 159.	3.5	17
59	Nanoencapsulation of Cyanidin-3- <i>O</i> -glucoside Enhances Protection Against UVB-Induced Epidermal Damage through Regulation of p53-Mediated Apoptosis in Mice. Journal of Agricultural and Food Chemistry, 2018, 66, 5359-5367.	5.2	47
60	Toxic effects of zearalenone on gametogenesis and embryonic development: A molecular point of review. Food and Chemical Toxicology, 2018, 119, 24-30.	3.6	65
61	Cytoprotective effects of dietary flavonoids against cadmiumâ€induced toxicity. Annals of the New York Academy of Sciences, 2017, 1398, 5-19.	3.8	76
62	Cyanidin-3-O-glucoside inhibits the UVB-induced ROS/COX-2 pathway in HaCaT cells. Journal of Photochemistry and Photobiology B: Biology, 2017, 177, 24-31.	3.8	55
63	Scandenolone, a natural isoflavone derivative from Cudrania tricuspidata fruit, targets EGFR to induce apoptosis and block autophagy flux in human melanoma cells. Journal of Functional Foods, 2017, 37, 229-240.	3.4	14
64	Glycidamide inhibits progesterone production through reactive oxygen species-induced apoptosis in R2C Rat Leydig Cells. Food and Chemical Toxicology, 2017, 108, 563-570.	3.6	32
65	Sonodegradation of cyanidinâ€3â€glucosylrutinoside: degradation kinetic analysis and its impact on antioxidant capacity <i>in vitro</i> . Journal of the Science of Food and Agriculture, 2017, 97, 1475-1481.	3.5	21
66	Stability, Antioxidant Capacity and Degradation Kinetics of Pelargonidin-3-glucoside Exposed to Ultrasound Power at Low Temperature. Molecules, 2016, 21, 1109.	3.8	26
67	Protective Effect of Cyanidin-3-O-Glucoside against Ultraviolet B Radiation-Induced Cell Damage in Human HaCaT Keratinocytes. Frontiers in Pharmacology, 2016, 7, 301.	3.5	42
68	Cyanidin-3-O-Glucoside Protects against 1,3-Dichloro-2-Propanol-Induced Reduction of Progesterone by Up-regulation of Steroidogenic Enzymes and cAMP Level in Leydig Cells. Frontiers in Pharmacology, 2016, 7, 399.	3.5	13
69	Possible adducts formed between hydroxymethylfurfural and selected amino acids, and their release in simulated gastric model. International Journal of Food Science and Technology, 2016, 51, 1002-1009.	2.7	15
70	Cytoprotective mechanism of ferulic acid against high glucose-induced oxidative stress in cardiomyocytes and hepatocytes. Food and Nutrition Research, 2016, 60, 30323.	2.6	45
71	Prevention of gastrointestinal lead poisoning using recombinant Lactococcus lactis expressing human metallothionein-I fusion protein. Scientific Reports, 2016, 6, 23716.	3.3	8
72	Chlorogenic acid increased 5-hydroxymethylfurfural formation when heating fructose alone or with aspartic acid at two pH levels. Food Chemistry, 2016, 190, 832-835.	8.2	49

#	Article	IF	CITATION
73	1,3-Dichloro-2-propanol inhibits progesterone production through the expression of steroidogenic enzymes and cAMP concentration in Leydig cells. Food Chemistry, 2014, 154, 330-336.	8.2	13
74	Toxic Mechanisms of 3-Monochloropropane-1,2-Diol on Progesterone Production in R2C Rat Leydig Cells. Journal of Agricultural and Food Chemistry, 2013, 61, 9955-9960.	5.2	27
75	Effects of electrode materials on the degradation, spectral characteristics, visual colour, and antioxidant capacity of cyanidin-3-glucoside and cyanidin-3-sophoroside during pulsed electric field (PEF) treatment. Food Chemistry, 2011, 128, 742-747.	8.2	37
76	Identification of degradation pathways and products of cyanidin-3-sophoroside exposed to pulsed electric field. Food Chemistry, 2011, 126, 1203-1210.	8.2	46
77	Comparative analyses of copigmentation of cyanidin 3-glucoside and cyanidin 3-sophoroside from red raspberry fruits. Food Chemistry, 2010, 120, 1131-1137.	8.2	70
78	<scp>Cyanidinâ€3â€</scp> <i>Ο</i> â€glucoside supplementation in cryopreservation medium improves human sperm quality. Andrologia, 0, , .	2.1	0