
Peter G Alexander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8008745/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials, 2013, 34, 331-339.	11.4	311
2	Cartilage Tissue Engineering Application of Injectable Gelatin Hydrogel with <i>In Situ</i> Visible-Light-Activated Gelation Capability in Both Air and Aqueous Solution. Tissue Engineering - Part A, 2014, 20, 2402-2411.	3.1	122
3	Stem Cell-Based Microphysiological Osteochondral System to Model Tissue Response to Interleukin-1β. Molecular Pharmaceutics, 2014, 11, 2203-2212.	4.6	114
4	Pathogenesis of Osteoarthritis: Risk Factors, Regulatory Pathways in Chondrocytes, and Experimental Models. Biology, 2020, 9, 194.	2.8	111
5	Osteochondral Tissue Chip Derived From iPSCs: Modeling OA Pathologies and Testing Drugs. Frontiers in Bioengineering and Biotechnology, 2019, 7, 411.	4.1	71
6	Three-dimensional osteochondral microtissue to model pathogenesis of osteoarthritis. Stem Cell Research and Therapy, 2013, 4, S6.	5.5	62
7	Engineering in-vitro stem cell-based vascularized bone models for drug screening and predictive toxicology. Stem Cell Research and Therapy, 2018, 9, 112.	5.5	62
8	Three-dimensional osteogenic and chondrogenic systems to model osteochondral physiology and degenerative joint diseases. Experimental Biology and Medicine, 2014, 239, 1080-1095.	2.4	60
9	Anatomical region-dependent enhancement of 3-dimensional chondrogenic differentiation of human mesenchymal stem cells by soluble meniscus extracellular matrix. Acta Biomaterialia, 2017, 49, 140-151.	8.3	60
10	Optimization of photocrosslinked gelatin/hyaluronic acid hybrid scaffold for the repair of cartilage defect. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1418-1429.	2.7	59
11	Enhancing chondrogenesis and mechanical strength retention in physiologically relevant hydrogels with incorporation of hyaluronic acid and direct loading of TGF-β. Acta Biomaterialia, 2019, 83, 167-176.	8.3	57
12	Graphene oxide-functionalized nanocomposites promote osteogenesis of human mesenchymal stem cells via enhancement of BMP-SMAD1/5 signaling pathway. Biomaterials, 2021, 277, 121082.	11.4	41
13	Antimicrobial activity of mesenchymal stem cells against Staphylococcus aureus. Stem Cell Research and Therapy, 2020, 11, 293.	5.5	36
14	Conduits harnessing spatially controlled cell-secreted neurotrophic factors improve peripheral nerve regeneration. Biomaterials, 2019, 203, 86-95.	11.4	35
15	Role of environmental factors in axial skeletal dysmorphogenesis. Birth Defects Research Part C: Embryo Today Reviews, 2010, 90, 118-132.	3.6	34
16	An in vitro chondro-osteo-vascular triphasic model of the osteochondral complex. Biomaterials, 2021, 272, 120773.	11.4	27
17	Development of a Spring-Loaded Impact Device to Deliver Injurious Mechanical Impacts to the Articular Cartilage Surface. Cartilage, 2013, 4, 52-62.	2.7	25
18	Prenatal exposure to environmental factors and congenital limb defects. Birth Defects Research Part C: Embryo Today Reviews, 2016, 108, 243-273.	3.6	24

Peter G Alexander

#	Article	IF	CITATIONS
19	Muscle injury promotes heterotopic ossification by stimulating local bone morphogenetic protein-7 production. Journal of Orthopaedic Translation, 2019, 18, 142-153.	3.9	24
20	Platelet-Rich Plasma Inhibits Mechanically Induced Injury in Chondrocytes. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2015, 31, 1142-1150.	2.7	22
21	Human Mesenchymal Stem Cellâ€Derived Miniature Joint System for Disease Modeling and Drug Testing. Advanced Science, 2022, 9, e2105909.	11.2	22
22	Meniscal substitution, a developing and long-awaited demand. Journal of Experimental Orthopaedics, 2020, 7, 55.	1.8	21
23	Injectable <i>BMP-2</i> gene-activated scaffold for the repair of cranial bone defect in mice. Stem Cells Translational Medicine, 2020, 9, 1631-1642.	3.3	20
24	An <i>In Vivo</i> Lapine Model for Impact-Induced Injury and Osteoarthritic Degeneration of Articular Cartilage. Cartilage, 2012, 3, 323-333.	2.7	18
25	Augmented repair of radial meniscus tear with biomimetic electrospun scaffold: an in vitro mechanical analysis. Journal of Experimental Orthopaedics, 2016, 3, 23.	1.8	16
26	The efficacy and safety of tranexamic acid for reducing blood loss following simultaneous bilateral total knee arthroplasty: a multicenter retrospective study. BMC Musculoskeletal Disorders, 2019, 20, 325.	1.9	16
27	Infrapatellar fat pad aggravates degeneration of acute traumatized cartilage: a possible role for interleukin-6. Osteoarthritis and Cartilage, 2017, 25, 138-145.	1.3	14
28	Neurotrophic support by traumatized muscle-derived multipotent progenitor cells: Role of endothelial cells and Vascular Endothelial Growth Factor-A. Stem Cell Research and Therapy, 2017, 8, 226.	5.5	12
29	Urolithin A Protects Chondrocytes From Mechanical Overloading-Induced Injuries. Frontiers in Pharmacology, 2021, 12, 703847.	3.5	12
30	High efficiency transfection of embryonic limb mesenchyme with plasmid DNA using square wave pulse electroporation and sucrose buffer. BioTechniques, 2014, 56, 85-89.	1.8	10
31	Engineering pre-vascularized bone-like tissue from human mesenchymal stem cells through simulating endochondral ossification. Biomaterials, 2022, 283, 121451.	11.4	10
32	Obesity does not increase blood loss or incidence of immediate postoperative complications during simultaneous total knee arthroplasty: A multicenter study. Knee, 2020, 27, 963-969.	1.6	9
33	Development of a large animal rabbit model for chronic periprosthetic joint infection. Bone and Joint Research, 2021, 10, 156-165.	3.6	9
34	Engineering osteoarthritic cartilage model through differentiating senescent human mesenchymal stem cells for testing disease-modifying drugs. Science China Life Sciences, 2022, 65, 309-327.	4.9	9
35	Tissue Engineering for Musculoskeletal Regeneration and Disease Modeling. Handbook of Experimental Pharmacology, 2020, 265, 235-268.	1.8	9
36	Dead muscle tissue promotes dystrophic calcification by lowering circulating TGF-β1 level. Bone and Joint Research, 2020, 9, 742-750.	3.6	8

PETER G ALEXANDER

#	Article	IF	CITATIONS
37	TGF-β1 plays a protective role in glucocorticoid-induced dystrophic calcification. Bone, 2020, 136, 115355.	2.9	7
38	Role of Canonical Wnt/β-Catenin Pathway in Regulating Chondrocytic Hypertrophy in Mesenchymal Stem Cell-Based Cartilage Tissue Engineering. Frontiers in Cell and Developmental Biology, 2022, 10, 812081.	3.7	7
39	Modeling appendicular skeletal cartilage development with modified high-density micromass cultures of adult human bone marrow-derived mesenchymal progenitor cells. Stem Cell Research and Therapy, 2019, 10, 388.	5.5	6
40	A Novel Mouse Model for SNP in Steroid Receptor Co-Activator-1 Reveals Role in Bone Density and Breast Cancer Metastasis. Endocrinology, 2021, 162, .	2.8	5
41	Paediatric knee anterolateral capsule does not contain a distinct ligament: analysis of histology, immunohistochemistry and gene expression. Journal of ISAKOS, 2021, 6, 82-87.	2.3	4
42	Mesenchymal stem cell-derived extracellular matrix (mECM): a bioactive and versatile scaffold for musculoskeletal tissue engineering. Biomedical Materials (Bristol), 2021, 16, 012002.	3.3	4
43	Wdpcp regulates cellular proliferation and differentiation in the developing limb via hedgehog signaling. BMC Developmental Biology, 2021, 21, 10.	2.1	3
44	Common animal models lack a distinct glenoid labrum: a comparative anatomy study. Journal of Experimental Orthopaedics, 2021, 8, 63.	1.8	2