Larry L Barton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8008510/publications.pdf

Version: 2024-02-01

471061 395343 45 1,824 17 33 citations h-index g-index papers 52 52 52 2229 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microalgae as food and supplement. Critical Reviews in Food Science and Nutrition, 1991, 30, 555-573.	5.4	320
2	Chapter 2 Biochemistry, Physiology and Biotechnology of Sulfateâ€Reducing Bacteria. Advances in Applied Microbiology, 2009, 68, 41-98.	1.3	302
3	Transformation of selenate and selenite to elemental selenium byDesulfovibrio desulfuricans. Journal of Industrial Microbiology, 1995, 14, 329-336.	0.9	131
4	Reduction of selenate and selenite to elemental selenium by <i>Wolinella succinogenes</i> Journal of Microbiology, 1992, 38, 1328-1333.	0.8	117
5	Sulfur Cycling and the Intestinal Microbiome. Digestive Diseases and Sciences, 2017, 62, 2241-2257.	1.1	98
6	Chemical transformation of toxic metals by a <i>Pseudomonas</i> strain from a toxic waste site. Environmental Toxicology and Chemistry, 1993, 12, 1365-1376.	2.2	96
7	Reduction of molybdate by sulfate-reducing bacteria. BioMetals, 2009, 22, 131-139.	1.8	70
8	A novel method for the measurement of elemental selenium produced by bacterial reduction of selenite. Journal of Microbiological Methods, 2011, 86, 140-144.	0.7	66
9	Reduction and Immobilization of Molybdenum by Desulfovibrio desulfuricans. Journal of Environmental Quality, 1997, 26, 1146-1152.	1.0	64
10	Hydrogen Sulfide: A Toxic Gas Produced by Dissimilatory Sulfate and Sulfur Reduction and Consumed by Microbial Oxidation. Metal Ions in Life Sciences, 2014, 14, 237-277.	2.8	63
11	The bacterial metallome: composition and stability with specific reference to the anaerobic bacterium Desulfovibrio desulfuricans. BioMetals, 2007, 20, 291-302.	1.8	56
12	Inhibition of ferric chelate reductase in alfalfa roots by cobalt, nickel, chromium, and copper. Journal of Plant Nutrition, 2000, 23, 1833-1845.	0.9	47
13	Removal of U and Mo from water by immobilizedDesulfovibrio desulfuricans in column reactors. , 1998, 60, 88-96.		43
14	EFFECT OF CARBON SOURCES ON FORMATION OF \hat{i}_{\pm} -AMYLASE AND GLUCOAMYLASE BY CLOSTRIDIUM ACETOBUTYLICUM. Journal of General and Applied Microbiology, 1975, 21, 51-59.	0.4	42
15	A new combination of substrates: biogas production and diversity of the methanogenic microorganisms. Open Life Sciences, 2018, 13, 119-128.	0.6	37
16	Sulfate-reducing bacteria impairs working memory in mice. Physiology and Behavior, 2016, 157, 281-287.	1.0	25
17	An assessment of growth yields and energy coupling inDesulfovibrio. Archives of Microbiology, 1978, 117, 21-26.	1.0	22
18	Hemoproteins in Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes. Advances in Microbial Physiology, 2012, 60, 1-90.	1.0	19

#	Article	IF	CITATIONS
19	Environmental scanning electron microscope (ESEM) evaluation of crystal and plaque formation associated with biocorrosion. Microscopy Research and Technique, 1993, 25, 429-433.	1.2	15
20	Dissimilatory nitrate and nitrite ammonification by sulphate-reducing eubacteria., 2007,, 241-264.		15
21	Iron metabolism by an ectomcorrhizal fungus, <i>Cenococcum graniforme</i> . Journal of Plant Nutrition, 1984, 7, 459-468.	0.9	14
22	PbS biomineralization using cysteine: Bacillus cereus and the sulfur rush. FEMS Microbiology Ecology, 2020, 96, .	1.3	14
23	Siderophoreâ€mediated iron metabolism in growth and nitrogen fixation by alfalfa nodulated withRhizobium meliloti. Journal of Plant Nutrition, 1996, 19, 1201-1210.	0.9	13
24	Sulphate-reducing bacteria and the human large intestine. , 0, , 503-522.		13
25	Metabolism of Metals and Metalloids by the Sulfate-Reducing Bacteria. , 2015, , 57-83.		13
26	Selenium respiration in anaerobic bacteria: Does energy generation pay off?. Journal of Inorganic Biochemistry, 2021, 222, 111509.	1.5	13
27	TEM Investigation of U6+ and Re7+ Reduction by Desulfovibrio desulfuricans, a Sulfate-Reducing Bacterium. Materials Research Society Symposia Proceedings, 1999, 608, 299.	0.1	10
28	Enzymatic and genomic studies on the reduction of mercury and selected metallic oxyanions by sulphate-reducing bacteria., 2007,, 435-458.		10
29	A specific transport system for FE ²⁺ in bacteria. Journal of Plant Nutrition, 1982, 5, 405-411.	0.9	9
30	Reduction of Metals and Nonessential Elements by Anaerobes. , 2003, , 220-234.		9
31	Physiological characteristics of <i>Rhizobium meliloti < li>1021 Tn5 mutants with altered rhizobactin activities. Journal of Plant Nutrition, 1992, 15, 2145-2156.</i>	0.9	7
32	Bismuth(III) interactions with Desulfovibrio desulfuricans: inhibition of cell energetics and nanocrystal formation of Bi2S3 and Bi0. BioMetals, 2019, 32, 803-811.	1.8	6
33	Influence of Methylobacterium on iron translocation in plants. BioMetals, 2011, 24, 575-580.	1.8	4
34	Bismuth(III) deferiprone effectively inhibits growth of Desulfovibrio desulfuricans ATCC 27774. BioMetals, 2016, 29, 311-319.	1.8	4
35	Ferrochelatase activity inAzospirillum brasilense with reference to the influence of metal cations. Biology of Metals, 1989, 2, 31-35.	1.1	3
36	Physiological responses of tomato roots grown in organ culture to iron-deficiency stress. Soil Science and Plant Nutrition, 2004, 50, 1177-1181.	0.8	3

#	Article	IF	CITATIONS
37	Suitability of fluorescence measurements to quantify sulfate-reducing bacteria. Journal of Microbiological Methods, 2013, 93, 192-197.	0.7	3
38	Differential cellular response of <i>anabaena variabilis </i> to iron. Journal of Plant Nutrition, 1988, 11, 1193-1203.	0.9	2
39	Nanoparticles Formed by Microbial Metabolism of Metals and Minerals. , 2014, , 145-176.		2
40	Ferric citrate reductase activity inlaccaria laccata, an ectomycorrhizal fungus. Journal of Plant Nutrition, 2000, 23, 1699-1706.	0.9	1
41	Dynamics of iron movement involving colloids, bacteria, and siderophores in an aqueous alkaline environment. Journal of Plant Nutrition, 1988, 11, 969-979.	0.9	O
42	Models of complexation which predict iron (II) availability. Journal of Plant Nutrition, 1988, 11, 1063-1074.	0.9	0
43	Overview of the fourth international symposium on iron nutrition and interactions in plants. Journal of Plant Nutrition, 1988, 11, 1577-1579.	0.9	O
44	Enrichment of Uranium inside Wood: a Natural Analog from a Sandstone-hosted Roll-type Uranium Ore Deposit. Materials Research Society Symposia Proceedings, 2004, 824, 462.	0.1	0
45	Constitution for International Biometals Society, Inc. BioMetals, 2011, 24, 771-773.	1.8	O