
Michela Bassolino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8008446/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Representation and Perception of the Body in Space. , 2022, , 640-656.		1
2	Neuromuscular electrical stimulation restores upper limb sensory-motor functions and body representations in chronic stroke survivors. Med, 2022, 3, 58-74.e10.	2.2	19
3	How ageing shapes body and space representations: A comparison study between healthy young and older adults. Cortex, 2021, 136, 56-76.	1.1	14
4	Robot-induced hallucinations in Parkinson's disease depend on altered sensorimotor processing in fronto-temporal network. Science Translational Medicine, 2021, 13, .	5.8	29
5	Disownership of body parts as revealed by a visual scale evaluation. An observational study. Neuropsychologia, 2020, 138, 107337.	0.7	10
6	Effect of tool-use observation on metric body representation and peripersonal space. Neuropsychologia, 2020, 148, 107622.	0.7	21
7	You or me? Disentangling perspectival, perceptual, and integrative mechanisms in heterotopagnosia. Cortex, 2019, 120, 212-222.	1.1	10
8	Hand perceptions induced by single pulse transcranial magnetic stimulation over the primary motor cortex. Brain Stimulation, 2019, 12, 693-701.	0.7	6
9	Nonâ€invasive brain stimulation of motor cortex induces embodiment when integrated with virtual reality feedback. European Journal of Neuroscience, 2018, 47, 790-799.	1.2	38
10	Ipsilesional functional recruitment within lower mu band in children with unilateral cerebral palsy, an event-related desynchronization study. Experimental Brain Research, 2018, 236, 517-527.	0.7	10
11	Boosting Action Observation and Motor Imagery to Promote Plasticity and Learning. Neural Plasticity, 2018, 2018, 1-3.	1.0	7
12	Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nature Communications, 2018, 9, 2421.	5.8	342
13	Quantifying the role of motor imagery in brain-machine interfaces. Scientific Reports, 2016, 6, 24076.	1.6	84
14	PP06.11 – 2980: EEG modulation during grasping movements of both hands in children affected by hemiplegic cerebral palsy. European Journal of Paediatric Neurology, 2015, 19, S54.	0.7	0
15	P7 – 2957: EEG modulation in cerebral palsy and healthy children during action observation compared to execution. European Journal of Paediatric Neurology, 2015, 19, S96.	0.7	0
16	Moving sounds within the peripersonal space modulate the motor system. Neuropsychologia, 2015, 70, 421-428.	0.7	32
17	Activating the motor system through action observation: is this an efficient approach in adults and children?. Developmental Medicine and Child Neurology, 2015, 57, 42-45.	1.1	21
18	Generalization of motor resonance during the observation of hand, mouth, and eye movements. Journal of Neurophysiology, 2015, 114, 2295-2304.	0.9	21

MICHELA BASSOLINO

#	Article	IF	CITATIONS
19	Dissociating effect of upper limb non-use and overuse on space and body representations. Neuropsychologia, 2015, 70, 385-392.	0.7	73
20	Training the Motor Cortex by Observing the Actions of Others During Immobilization. Cerebral Cortex, 2014, 24, 3268-3276.	1.6	85
21	Shaping Motor Cortex Plasticity Through Proprioception. Cerebral Cortex, 2014, 24, 2807-2814.	1.6	58
22	Tool-use reshapes the boundaries of body and peripersonal space representations. Experimental Brain Research, 2013, 228, 25-42.	0.7	194
23	Functional effect of short-term immobilization: Kinematic changes and recovery on reaching-to-grasp. Neuroscience, 2012, 215, 127-134.	1.1	40
24	Use-Dependent Hemispheric Balance. Journal of Neuroscience, 2011, 31, 3423-3428.	1.7	102
25	Everyday use of the computer mouse extends peripersonal space representation. Neuropsychologia, 2010, 48, 803-811.	0.7	170
26	Extended Multisensory Space in Blind Cane Users. Psychological Science, 2007, 18, 642-648.	1.8	216